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1 Relation de divisibilité

Définition 18.1 – Relation “divise”

On définit sur Z une relation binaire, notée | , de la manière suivante : pour tous a,b ∈ Z,

b | a ⇐⇒ ∃k ∈ Z a = bk

On dit que b divise a, ou encore que a est un multiple de b. L’ensemble des entiers qui divisent a se note :

div(a) := {b ∈ Z | ∃k ∈ Z a = bk}

L’ensemble bZ := {bk | k ∈ Z} correspond à l’ensemble des multiples de b.

Exemple 1. div(5) = . . . . . . . . . . . . . . . . . . . . .

Exemple 2. Quelques propriétés “immédiates” des ensembles de diviseurs :

1. div(0) = . . . . . .

2. div(1) = div(−1) = . . . . . .

3. ∀a ∈ Z −1 | a et 1 | a

4. ∀a ∈ Z div(−a) = div(a).

5. ∀a ∈ Z∗ div(a)⊂ J−a,aK

6. ∀a ∈ Z∗ 0 /∈ div(a). Par contre, 0 ∈ div(()0).

La relation “divise” sur Z est réflexive et transitive. Toutefois, elle n’est pas symétrique (1 | 2 mais 2 ∤ 1) ni
antisymétrique (cf ci-dessous). Ce n’est donc ni une relation d’équivalence, ni une relation d’ordre.

Théorème 18.2 – “Pseudo-antisymétrie” de la division sur Z

Soit a,b ∈ Z. Alors
(a | b et b | a) ⇐⇒ |a|= |b|

Dans ce cas, les entiers a et b sont dits associés.

Remarque. En revanche, la relation “divise” définie sur N est une relation d’ordre.

Théorème 18.3

Soit a,b,c,d ∈ Z.

1. (d | a et d | b) =⇒ ∀u,v ∈ Z d | (au+bv)

2. a | b =⇒ a | bc

3. (a | b et c | d) =⇒ ac | bd

4. Si c ̸= 0, alors a | b ⇐⇒ ac | bc (division par c non nul de part et d’autre du “divise”)

Démonstration. Montrons la première propriété.

Comme d | a et d | b, il existe k1,k2 ∈ Z tels que a = dk1 et b = dk2. Ainsi,

au+bv = dk1u+dk2v = d (k1u+ k2v)

et comme k1u+ k2v ∈ Z, on a d | (au+bv).
Les preuves des autres assertions sont assez immédiates et laissées en exercice.
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2 Division euclidienne dans Z

Lemme 18.4

Soit (xn) une suite à valeurs dans Z. Alors (xn) est convergente si et seulement si (xn) est stationnaire.

Démonstration. Si (xn) est stationnaire, elle est constante à partir
d’un certain rang, donc est évidemment convergente. Réciproque-
ment, supposons que (xn) est convergente et montrons qu’elle est
stationnaire.
Notons ℓ = limxn ∈ R. Par la définition de la limite, si on prend
ε = 1/3, il existe N ∈ N tel que pour tout n ≥ N

|xn − ℓ| ≤ 1
3
= ε donc xn ∈

[
ℓ− 1

3
, ℓ+

1
3

]

Posons J :=
[
ℓ− 1

3
, ℓ+

1
3

]
. J contient un entier car xN ∈ Z∩ J.

Or, J est de longueur
2
3

donc J contient au plus un entier. Ainsi,

J ∩Z = {xN}. Or, pour tout n ≥ N, on a xn ∈ Z∩ J, si bien que
xn = xN . Ainsi, xn est stationnaire (et en particulier ℓ= xN ).

Théorème 18.5

Toute partie non vide et majorée de Z admet un maximum.

Toute partie non vide et minorée de Z admet un minimum.

Démonstration. On ne prouve que la première assertion. Soit
X ⊂Z une partie non vide et majorée. Comme X ⊂R, X admet une
borne supérieure, qu’on note M. Pour conclure, il suffit de montrer
que M ∈ X . Par caractérisation de la borne supérieure, il existe une

suite (xn) à valeurs dans X telle que xn → M. En particulier, (xn)
est à valeurs dans Z. Par le Lemme 18.4, on en déduit que (xn) est
stationnaire. Ainsi, xn = M à partir d’un certain rang. On en déduit
que M ∈ X .

Théorème 18.6 – Division euclidienne

Soit a,b ∈ Z tels que b ̸= 0. Alors il existe un unique couple (q,r) ∈ Z2 tel que

a = bq+ r et 0 ≤ r < |b|

• q est appelé le quotient de la division euclidienne de a par b.

• r est appelé le reste de la division euclidienne de a par b.

Démonstration. Unicité – Soit (q,r) et (q′,r′) deux couples de Z2 qui vérifient l’assertion
ci-dessus. Alors, {

a = bq+ r

a = bq′+ r′
et

{
0 ≤ r < |b|
0 ≤ r′ < |b|

En soustrayant les deux égalités, on en déduit que :

0 = b(q−q′)+ r− r′

Autrement dit, r− r′ = b(q′−q) donc r− r′ ∈ bZ. Or, on a aussi{
0 ≤ r < |b|
−|b|<−r′ ≤ 0
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donc par somme, −|b|< r− r′ < |b|. Comme r− r′ ∈ bZ, on en déduit que r− r′ = 0.
Ainsi, r = r′. D’où b(q′−q) = 0, et comme b ̸= 0, on en conclut que q = q′.

Existence – On pose X := bZ ∩
]
−∞,a

]
. Comme b ̸= 0, on montre

facilement que X est non vide. De plus X ⊂ Z et X est majorée par
a. Par conséquent, X admet un plus grand élément par le Théo-
rème 18.5. On pose M := maxX . Comme M ∈ X , il existe q ∈ Z tel
que M = bq et M ≤ a. On pose

r := a−bq ∈ Z
Comme bq = M ≤ a, il est clair que r ≥ 0. Pour conclure, il suffit de

montrer que r < |b|. Supposons par l’absurde que r ≥ |b|. Alors

a = bq+ r ≥ bq+ |b|

Comme bq+ |b| ∈ bZ, on en déduit que bq+ |b| ∈ X . Or, M = bq <
bq+ |b|, ce qui contredit le fait que M majore X . Ainsi, r < |b| et
l’existence d’un tel couple (q,r) est vérifiée.

Remarque. On peut montrer que si b > 0, le quotient q de la division euclidienne est donné par q =
⌊a

b

⌋
.

Exemple 3. Calculer la division euclidienne de 539 par 17.

539 | 17
51 | 31
29|
17|
12|

Donc le quotient est 31 et le reste est 12 :

539 = 31×17+12

Exemple 4. Quelle est la division euclidienne de 17 par 539 ?
17 = 539×0+17 donc le quotient est 0 et le reste est 17.

Théorème 18.7

Soit (a,b) ∈ Z×Z∗. On a b | a si et seulement si le reste de la division euclidienne de a par b est nul.

Remarque. En langage Python, les instructions a//b et a%b renvoient respectivement le quotient et le
reste de la division euclidienne de a par b.

3 PGCD

3.1 PGCD dans N

Soit a,b ∈ N tels que (a,b) ̸= (0,0). On souhaite définir le PGCD de a et b comme étant le plus grand diviseur
commun à a et à b. Or, l’ensemble des diviseurs communs à a et b est l’ensemble

X = div(a)∩div(b)

Le PGCD de a et b sera le maximum de X . Mais il faut s’assurer que ce maximum existe !

• Puisque div(a) et div(b) sont des parties de Z, il en va de même pour X .

• De plus, 1 | a et 1 | b donc 1 ∈ X . On en déduit que X est non vide.

• Enfin, montrons que X est majoré. Comme (a,b) ̸= (0,0), on a a ̸= 0 ou b ̸= 0. Supposons par exemple
que a ̸= 0. Alors div(a)⊂ J−a,aK. Comme X ⊂ div(a), on en déduit que X ⊂ J−a,aK. Donc X est majoré
(par a). La preuve est similaire dans le cas b ̸= 0.
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Ainsi, X est une partie non vide et majorée de Z, donc X admet un maximum par le Théorème 18.5. On en déduit
que la définition suivante a un sens.

Définition 18.8 – PGCD

Soit a,b ∈ N tels que (a,b) ̸= (0,0). On définit le PGCD de a et b comme le plus grand entier qui divise à
la fois a et b. Il est noté a∧b.

On notera que, par unicité du maximum, le PGCD est unique.

Exemple 5. Le PGCD de 12 et de 18 est 6. En effet (on omet les diviseurs négatifs) :

div(12) = {· · · ,1,2,3,4,6,12} div(18) = {· · · ,1,2,3,6,9,18}

Ainsi, div(12)∩div(18) = {· · · ,1,2,3,6}

si bien que 12∧18 = 6.

Remarque (Convention 0∧0 = 0). On pose par convention 1 0∧0 = 0. Ainsi, a∧b a un sens pour tous a,b ∈ N
(et même a,b ∈ Z comme on le verra plus loin).

Exemple 6. Soit a,b ∈ N.

1. a∧1 = ......

2. a∧0 = ......

3. a∧b = b∧a

4. Si (a,b) ̸= (0,0), alors a∧b ≥ 1

5. a∧b = b ⇐⇒ b | a

Théorème 18.9

Soit a,b ∈ N. Soit q,r ∈ N tels que a = bq+ r. Alors

div(a)∩div(b) = div(b)∩div(r) et a∧b = b∧ r

Démonstration. On raisonne par double inclusion. Soit d ∈ div(a)∩div(b). Comme d | a
et d | b, on a d | (a−bq), c’est-à-dire d | r. Comme on a aussi d | b, on en déduit que
d ∈ div(b)∩div(r).

Réciproquement, si d | b et d | r, alors d | (bq + r), d’où d | a. On en déduit que
d ∈ div(a)∩div(b). Ainsi div(a)∩div(b) = div(b)∩div(r).

Comme div(a)∩div(b) et div(b)∩div(r) sont égaux, leurs maxima le sont aussi, donc
a∧b = b∧ r.

1. Techniquement, le PGCD de 0 et 0 n’a pas de sens car div(0)∩div(0) = Z∩Z = Z et Z n’admet pas de maximum. Cependant,
on peut aussi définir a∧ b comme étant le maximum de X = div(a)∩div(b)∩N pour la relation d’ordre “divise” sur N. Dans ce cas,
div(0)∩div(0)∩N= N et 0 est bien le maximum de N pour “divise” car 0 majore tous les entiers naturels pour la relation “divise” (tout
entier naturel divise 0). Cette nouvelle définition est cohérente avec la définition classique du PGCD de deux entiers a et b tels que
(a,b) ̸= (0,0) : dans l’exemple ci-dessus, on a div(12)∩div(18)∩N= {1,2,3,6} et 6 est bien le plus grand élément de cet ensemble pour
la relation “divise”.
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Théorème 18.10

Soit a,b ∈ N. Les diviseurs communs à a et b sont exactement les diviseurs de a∧b :

div(a)∩div(b) = div(a∧b)

ou encore, de manière équivalente :

∀n ∈ Z (n | a et n | b) ⇐⇒ n | (a∧b)

De plus a∧b est le seul entier positif qui vérifie l’une des assertions ci-dessus.

Démonstration. On va montrer l’assertion suivante pour tout b ∈
N :

Hb : ∀a ∈ N div(a)∩div(b) = div(a∧b)
On procède par récurrence forte sur b ∈ N.

• Initialisation : Si b = 0, alors d’une part div(a)∩div(b) =
div(a)∩Z = div(a) et d’autre part a = a∧ b donc div(a∧
b) = div(a). Donc H0 est vraie.

• Hérédité : Soit b0 ∈ N. On suppose que pour tout b ≤ b0,
l’assertion Hb est vraie. Montrons que Hb0+1 est vraie. Pour
simplifier, on pose B = b0 + 1. Soit a ∈ N. Montrons que
div(a)∩div(B) = div(a∧B). De par la division euclidienne
de a par B (possible car B ̸= 0), il existe q,r ∈ Z tels que

a = Bq+ r et 0 ≤ r < |B|= B

Or, par le lemme précédent, on a a∧B = B∧ r et

div(a)∩div(B) = div(B)∩div(r) (∗)

Or, comme r < B, on a r ≤ b0 donc par hypothèse de récur-
rence, l’assertion Hr est vraie :

∀a′ ∈ N div(a′)∩div(r) = div(a′∧ r)

En particulier, (pour a′ = B), on en déduit que div(B)∩
div(r) = div(B∧ r). On en déduit avec (∗) que

div(a)∩div(B) = div(B∧ r)

= div(a∧B) car a∧B = B∧ r

Par arbitraire sur a, on a montré que HB est vraie, i.e. que
Hb0+1 est vraie.

• Conclusion : la propriété Hb est vraie pour tout b ∈ N.

3.2 Algorithme d’Euclide

L’algorithme d’Euclide permet de calculer un PGCD en effectuant des divisions euclidiennes successives. Le
calcul de a∧b est immédiat si a ou b vaut 0, c’est pourquoi on suppose a,b ∈ N∗ dans la méthode.

Méthode – Algorithme d’Euclide

Soit a,b ∈ N∗. Quitte à échanger a et b, on suppose b ≤ a.

1. On fait la division euclidienne de a par b : on trouve un reste r1.

2. Puis on fait la division euclidienne de b par r1 : on trouve un reste r2.

3. Puis on fait la division euclidienne de r1 par r2 : on trouve un reste r3, etc.

4. (...)

5. On s’arrête dès qu’on trouve un reste nul : rk = 0 avec k ≥ 1.

6. Alors, le PGCD de a et b est le dernier reste non nul qu’on a obtenu, à savoir :

rk−1 = a∧b (avec la convention r0 = b)

Démonstration. En effet, on a div(rk) = div(0) = Z, donc, par le Théorème 18.9

div(a)∩div(b) = div(b)∩div(r1) = . . . = div(rk−1)∩div(rk) = div(rk−1)∩Z = div(rk−1)

si bien que rk−1 = a∧b par le Théorème 18.10.
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Exemple 7. Calculer le PGCD de 195 et 247.
247 = 1×195+52
195 = 3×52+39
52 = 1×39+13
39 = 3×13+0

Le dernier reste non nul est 13 : on a
donc 195∧247 = 13.

L’algorithme d’Euclide est un grand classique qu’il faut savoir coder en Python !

def euclide(a,b):
"""Calcule le PGCD de deux entiers naturels a et b."""
while b!=0:

a, b = b, a%b # (a,b)-->(b,r1)-->(r1,r2)-->(r2,r3)--> ... -->(PGCD,0)
return a

3.3 PGCD de deux entiers relatifs

Définition 18.11

Soit a,b ∈ Z. On définit le PGCD de a et b par :

a∧b := |a|∧ |b|

et on a de même div(a)∩div(b) = div(a∧b).

Ainsi, il est suffisant de savoir calculer le PGCD de deux entiers naturels pour traiter le cas général.

3.4 Relation de Bézout / Théorème de Bézout–Bachet

Théorème 18.12 – Relation de Bézout / Théorème de Bézout–Bachet

Soit a,b ∈ Z. Il existe u,v ∈ Z tels que
au+bv = a∧b

Les entiers u et v sont appelés des coefficients de Bézout de a et b.

Démonstration. Montrons d’abord la propriété pour tous a,b ∈ N.
Il suffit de montrer l’assertion suivante pour tout b ∈ N :

Hb : ∀a ∈ N ∃u,v ∈ Z au+bv = a∧b

On procède par récurrence forte sur b ∈ N.
• Initialisation : si b = 0, alors pour tout a ∈ N, on a a∧b = a,

donc le couple (u,v) = (1,0) convient. Ainsi, H0 est vraie.
• Hérédité : soit b0 ∈N. On suppose que Hb est vraie pour tout

b ≤ b0. Montrons Hb0+1. Pour simplifier on pose B = b0 +1.
Soit a ∈ N. De par la division euclidienne de a par B (qui est
bien non nul), il existe q,r ∈ Z tels que

a = Bq+ r et 0 ≤ r < B

On a alors a∧B = B∧ r. De plus, comme r < B, on a r ≤ b0
donc l’assertion Hr est vraie, à savoir

∀a′ ∈ N∗ ∃u′,v′ ∈ Z a′u′+ rv′ = a′∧ r

En particulier, (avec a′ = B), il existe u′,v′ ∈ Z tels que

Bu′+ rv′ = B∧ r =⇒ Bu′+(a−Bq)v′ = a∧B

=⇒ av′+B
(
u′−qv′

)
= a∧B

si bien que le couple (u,v) := (v′,u′−qv′) convient. Finale-
ment HB est vraie.

Ainsi, Hb est vraie pour tout b ∈ N. On a donc montré le théorème
de Bézout-Bachet dans le cas a,b ∈ N. Maintenant, montrons-le
pour tous a,b ∈ Z. Comme |a| et |b| sont des entiers positifs, par ce
qui précède, il existe u,v ∈ Z tels que |a|u+ |b|v = a∧b.

• Si a ≤ 0 et b ≥ 0, comme |a|=−a, on a

a(−u)+bv = |a|u+ |b|v = a∧b

On en déduit que −u et v sont des coefficients de Bézout de
a et b.

• Les autres cas selon les signes de a et/ou b peuvent être
traités par les mêmes arguments.

Finalement, la propriété est vérifiée pour tous a,b ∈ Z.
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Remarque. Les coefficients u et v ne sont pas uniques : si au+bv = a∧b, alors pour tout k ∈ Z, on vérifie que
a(u+bk)+b(v−ak) = a∧b, donc u+bk et v−ak sont aussi des coefficients de Bézout de a et b.

Méthode – Algorithme d’Euclide étendu

On peut calculer les coefficients de Bézout avec l’algorithme d’Euclide étendu, cf exemple ci-dessous.

Exemple 8. Calculer 247∧195 puis trouver un couple (u,v) ∈ Z2 tel que 247u+195v = 247∧195.

247 195
247 1 0
195 0 1

247 = 1×195+52 52 = 247−195 52 1 −1 L247 −L195

195 = 3×52+39 39 = 195−3×52 39 −3 4 L195 −3L52

52 = 1×39+13 13 = 52−1×39 13 4 −5 L52 −L39

39 = 3×13+0

Donc 247∧195= 13. On constate que 13= 4×247+(−5)×195, d’où (u,v) = (4,−5)
convient.

Méthode

Pour montrer que deux entiers positifs m et n sont égaux, on peut montrer que m | n et n | m (ce qui conclut
car “divise” est une relation d’ordre sur N).

Théorème 18.13 – Factorisation par un entier dans le PGCD

Soit a,b ∈ Z et c ∈ N∗. Alors (ca)∧ (cb) = c(a∧b).

Démonstration.

• Montrons que (ca)∧(cb) divise c(a∧b). Par la relation de Bézout, il existe u,v∈Z
tels que au+bv = a∧b, donc en multipliant par c, on a (ca)u+(cb)v = c(a∧b).

Or,

{
(ca)∧ (cb) | ca

(ca)∧ (cb) | cb
donc (ca)∧ (cb) divise (ca)u+(cb)v, i.e. divise c(a∧b).

• Montrons que c(a∧b) divise (ca)∧ (cb). En appliquant la relation de Bézout aux
entiers ca et cb, il existe u,v ∈ Z tels que (ca)u+(cb)v = (ca)∧ (cb). Or, comme{

a∧b | a

a∧b | b
, on a

{
c(a∧b) | ca

c(a∧b) | cb
. Comme c(a∧b) divise les entiers ca et cb, il

divise leur PGCD, i.e. (ca)∧ (cb).
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Finalement, les entiers c(a∧ b) et (ca)∧ (cb) se divisent l’un et l’autre, donc sont
égaux.

4 Entiers premiers entre eux

4.1 Définition et théorème de Bézout

Définition 18.14 – Entiers premiers entre eux

Soit a,b ∈ Z. On dit que a et b sont premiers entre eux si a∧b = 1.

Autrement dit, a et b sont premiers entre eux si les seuls diviseurs communs à a et b sont −1 et 1.

Théorème 18.15 – Théorème de Bézout

Soit a,b ∈ Z.
a∧b = 1 ⇐⇒ ∃u,v ∈ Z au+bv = 1

Il ne faut pas confondre la relation de Bézout (Théorème 18.12) et le Théorème de Bézout. Pour tous
a,b,d ∈ Z :

Relation de Bézout : d = a∧b =⇒ ∃u,v ∈ Z au+bv = d

Théorème de Bézout : 1 = a∧b ⇐⇒ ∃u,v ∈ Z au+bv = 1

Démonstration. Le sens direct est une conséquence immédiate du théorème de Bézout-Bachet.

Montrons le sens réciproque. On suppose qu’il existe u,v ∈ Z tels que au+ bv = 1.
Or, on sait que a ∧ b divise a et b, donc a ∧ b divise au + bv, donc divise 1. Ainsi,
a∧b ∈ {−1,1}. Comme a∧b est positif, on a a∧b = 1.

Exemple 9. Soit a ∈ Z. Montrer que a et a+1 sont premiers entre eux.

On a

a× (−1)+(a+1)×1 =−a+a+1 = 1

d’où a∧ (a+1) = 1 par le théorème de Bézout.

Théorème 18.16 – Se ramener à des entiers premiers entre eux

Soit a,b ∈ Z tels que (a,b) ̸= (0,0). Si on pose a′ =
a

a∧b
∈ Z et b′ =

b
a∧b

∈ Z, alors a′ et b′ sont premiers

entre eux.

En définitive, les entiers
a

a∧b
et

b
a∧b

sont toujours premiers entre eux.
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Démonstration. On pose d = a∧b. Comme d | a et d | b, il est clair que a′ et b′ sont entiers.
Ensuite, par le théorème de Bézout-Bachet, il existe u,v ∈ Z tels que

au+bv = d
=⇒ da′u+db′v = d
=⇒ a′u+b′v = 1

donc a′∧b′ = 1 par le théorème de Bézout.

Définition 18.17

On dit qu’une fraction est irréductible si son numérateur et son dénominateur sont premiers entre eux.
On ne peut alors plus la “simplifier”.

Remarque. Soit (a,b) ∈ Z×Z∗ (avec a,b non nécessairement premiers entre eux). Alors, par le Théorème qui

précède, une écriture irréductible de
a
b

est la fraction
a′

b′
avec a′ =

a
a∧b

et b′ =
b

a∧b
.

Exemple 10. Comme (−195)∧247 = 13, la fraction
−195
247

se simplifie en une fraction irréductible :
−195

13
247
13

=

−15
19

.

Remarque. Dans l’exemple ci-dessus, la fraction
15
−19

est également irréductible, mais en général on prend un

dénominateur positif, ce qui garantit l’unicité.

4.2 Trois corollaires du théorème de Bézout

Corollaire 18.18 – Lemme de Gauss

Soit a,b,c ∈ Z. Si a divise bc et si a est premier avec b, alors a divise c.

Autrement dit :

{
a | bc
a∧b = 1

=⇒ a | c

Démonstration. Comme a∧b = 1, il existe u,v ∈ Z tels que au+bv = 1. Ainsi,

auc+bvc = c
Or, a | auc et de plus a | bc donc a | bcv. On en déduit que a | c.

Corollaire 18.19

Soit a,b1,b2 ∈ Z. Si a est premier avec les entiers b1 et b2, alors a est premier avec leur produit b1b2.

Autrement dit :

{
a∧b1 = 1
a∧b2 = 1

=⇒ a∧ (b1b2) = 1
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Démonstration. Par le théorème de Bézout, il existe u,v,u′,v′ ∈Z tels que

{
au+b1v = 1
au′+b2v′ = 1

En multipliant ces inégalités, on obtient :

a×
(
uu′+b1v+b2v′

)︸ ︷︷ ︸
U∈Z

+b1b2 ×
(

vv′
)

︸ ︷︷ ︸
V∈Z

= 1

si bien que a∧ (b1b2) = 1, à nouveau par le théorème de Bézout.

Corollaire 18.20

Soit a,b,c ∈ Z. Si a divise c, si b divise c et si a et b sont premiers entre eux alors ab divise c.

Autrement dit :


a | c
b | c
a∧b = 1

=⇒ ab | c

Démonstration. Comme a∧b = 1, il existe u,v ∈ Z tels que au+bv = 1. Ainsi,

auc+bvc = c

Or, a | c et b | c donc il existe p,q ∈ Z tels que c = ap et c = bq. Ainsi,

c = au(bq)+bv(ap) = ab(uq+ vp)

Donc ab | c.

Exemple 11. Soit n ∈ Z. Puisque 2 et 3 sont premiers entre eux, on a (2 | n et 3 | n) =⇒ 6 | n, et c’est même
une équivalence.

5 Congruences

5.1 Définition et relation d’équivalence

Définition 18.21 – Congruences

Soit un entier n ≥ 2 et a,b ∈ Z. On dit que a est congru à b modulo n si n | (a−b). On note alors

a ≡ b [n]

Certains auteurs notent parfois a ≡ b (mod n). Voici plusieurs caractérisations de cette définition :

a ≡ b [n] ⇐⇒ ∃k ∈ Z a−b = kn

⇐⇒ ∃k ∈ Z a = b+ kn

G. Peltier 11 / 28



Arithmétique

Exemple 12. ◦ 10 ≡ 3 ≡−4 [7].

◦ a ≡ 0 [n] si et seulement si a est divisible par n. Par exemple a ≡ 0 [2] ssi a est pair.

◦ Résoudre l’équation x ≡ 2 [7].
x ≡ 2 [7] ⇐⇒ ∃k ∈ N x = 2+7k donc S = {2+7k | k ∈ Z}= 2+7Z.

Théorème 18.22 – Relation “congru modulo n”

Soit a,b ∈ Z et un entier n ≥ 2.

1. La relation “congru modulo n” est une relation d’équivalence :

• a ≡ a [n]
• si a ≡ b [n], alors b ≡ a [n].
• si a ≡ b [n] et b ≡ c [n], alors a ≡ c [n].

2. a ≡ b [n] si et seulement si a et b ont le même reste quand on réalise leur division euclidienne par n.

3. Il y a donc n classes d’équivalence pour la relation “congru modulo n” :

0,1, · · · ,n−1

(Une classe pour chaque reste possible)

5.2 Opérations et congruences

Théorème 18.23 – Opérations sur les congruences

Soit a,b,c,d ∈ Z et un entier n ≥ 2.

1. On peut additionner, soustraire ou multiplier les congruences :

{
a ≡ b [n]
c ≡ d [n]

=⇒


a+ c ≡ b+d [n]
a− c ≡ b−d [n]
ac ≡ bd [n]

2. On peut ajouter / retrancher autant de fois n que l’on souhaite dans une congruence :

a ≡ b [n] =⇒ ∀k ∈ Z a+ kn ≡ b [n]

La première assertion entraine notamment (par somme, différence ou produit de a ≡ b [n] avec lui-même) :

a ≡ b [n] =⇒

{
∀k ∈ Z ka ≡ kb [n]
∀k ∈ N∗ ak ≡ bk [n]

Démonstration. On ne montre que le premier point, pour la
somme et le produit :

{
a ≡ b [n]
c ≡ d [n]

{
n | a−b
n | c−d{
n | (a−b)+(c−d)
n | (a−b)×d +(c−d)×a

Donc on a : {
n | (a+ c)− (b+d)
n | ac−bd{
(a+ c)≡ (b+d) [n]
ac ≡ bd [n]
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Exemple 13. Montrer que 92025 ≡−1 [10].

9 ≡ (−1) [10] donc 92025 ≡ (−1)2025 ≡−1 [10].

Définition 18.24 – Tableaux de congruence

Soit a ∈ Z et un entier n ≥ 2. On appelle tableau de congruence de a modulo n une table de la forme :

k 1 2 3 · · ·
ak ≡ . . . [n]

où, pour chaque valeur de k, on remplit la case vide par une valeur de J0,n−1K qui est congrue à ak modulo n.

Théorème 18.25 – Cyclicité du tableau de congruence

Les valeurs (de la seconde ligne) du tableau de congruence forment un cycle. De plus, si a∧n = 1, l’une
de ces valeurs est 1.

Démonstration. Admise en MPSI, démontrée en MP.

Méthode

Pour déterminer à quoi est congru am modulo n pour de grandes valeurs de m, on peut remplir un tableau
de congruence :

1. Si a∧ n = 1, on peut s’arrêter dès qu’on a trouvé k tel que ak ≡ 1 [n] ou ak ≡ n− 1 ≡ −1 [n], cf
ci-dessous.

2. Sinon, on peut exploiter le caractère cyclique du tableau.

Exemple 14. Déterminer le reste de la division euclidienne de 72019 par 22.

(Il faut trouver r ∈ J0,21K tel que 72019 ≡ r [22]).

k 1 2 3 4 5
7k ≡ . . . [22] 7 5 13 3 21

72 ≡ 49 ≡ 5 [22]

73 ≡ 7×72 ≡ 7×5 ≡ 35 ≡ 13 [22]
74 = 7×73 ≡ 7×13 ≡ 7× (−9)≡−63 ≡ 3 [22]

75 = 7×74 ≡ 7×3 ≡ 21 ≡−1 [22]

De plus, 2019 = 2015+4 = 5×403+4. Ainsi

72019 = 75×403+4

=
(

75
)403

×74

≡ (−1)403 ×74 [22]
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Donc

72019 ≡ (−1)×3 ≡−3 ≡ 19 [22]

Ainsi, le reste de la division euclidienne de 72019 par 22 est 19.

5.3 Congruence et “division”

Attention la division dans une congruence n’est pas autorisée en général : 9 ≡ 3 [6] mais
9
3
̸≡ 3

3
[6]. Par

contre, si a, b et n sont tous divisibles par un entier d ∈ N∗, alors la division est possible :

Théorème 18.26 – Division – crochet inclus

Soit x,y ∈ Z, a ∈ Z∗ et n ≥ 2 un entier. On a ax ≡ ay [an] ⇐⇒ x ≡ y [n].

Par exemple 9 ≡ 3 [6] =⇒ 3 ≡ 1 [2].

Cette division est possible seulement si le facteur a est déjà présent dans le crochet et dans les deux membres,
ce qui est assez restrictif. Par exemple, si on souhaite résoudre 5x ≡ 2 [7], on ne peut pas “diviser par 5” cette
équation. Il faut donc faire autrement. Plutôt que de diviser par 5, on va multiplier... par l’inverse de 5 ! Mais un
inverse modulo n, cf ci-dessous.

Définition 18.27 – Inverse modulo n

Soit a ∈ Z et un entier n ≥ 2. On dit que a admet un inverse modulo n s’il existe c ∈ Z tel que ac ≡ 1 [n].
Un tel entier c est appelé un inverse de a modulo n.

Il n’y a pas unicité de l’inverse : si ac ≡ 1 [n], alors pour tout k ∈ Z a(c+ kn)≡ 1 [n]

Théorème 18.28 – Passage à l’inverse dans une congruence

Soit a ∈ Z et un entier n ≥ 2. Alors a admet un inverse modulo n si et seulement si a∧n = 1.
Dans ce cas, si on note c cet inverse, alors

∀x,b ∈ Z ax ≡ b [n] ⇐⇒ x ≡ bc [n]

Méthode – Trouver un inverse de a modulo n

Soit a ∈ Z et un entier n ≥ 2 tels que a∧n = 1. Pour trouver un inverse de a modulo n, on peut :

• Chercher un inverse “évident”, parmi les entiers de J1,n−1K.

• Calculer un couple de coefficients de Bézout (u,v) tels que au+nv = 1. Dans ce cas, au ≡ 1 [n],
donc u est un inverse de a modulo n.

Exercice 1. Résoudre (dans Z) l’équation 5x ≡ 2 [7].
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5∧7 = 1 donc 5 admet un inverse modulo 7. De plus, 7×3+(−4)×5 = 1 d’où

(−4)×5 ≡ 1 [7]

Ainsi, −4 est un inverse de 5 modulo 7. Par suite,

5x ≡ 2 [7]
⇐⇒ (−4×5)x ≡−8 [7]
⇐⇒ x ≡−8 [7]
⇐⇒ x ≡ 6 [7]

Finalement, S = {6+7k | k ∈ Z}= 6+7Z.

Corollaire 18.29 – Division – crochet exclu

Soit x,y,a ∈ Z et n ≥ 2 un entier. Si a∧n = 1 , alors ax ≡ ay [n] ⇐⇒ x ≡ y [n].

Démonstration. Comme a∧ n = 1, l’entier a admet un inverse modulo n, qu’on note c. On a donc ac ≡ 1 [n],
donc en particulier c ̸= 0. Alors

ax ≡ ay [n] ⇐⇒ cax ≡ cay [n] ⇐⇒ x ≡ y [n] car ca ≡ 1 [n]

Méthode – Résoudre une équation sur les congruences

Étant donné A,B,N ∈ Z, on cherche à résoudre Ax ≡ B [N] d’inconnue x ∈ Z.

1. On détermine d := A∧N et on tente de diviser la congruence crochet inclus par d :

• Si d ne divise pas B, il n’y a pas de solution.

• Si d | B, on pose

a :=
A
d
∈ Z b :=

B
d
∈ Z n :=

N
d
∈ Z

On peut alors diviser la congruence par d : Ax ≡ B [N] ⇐⇒ ax ≡ b [n]. De plus a∧n = 1.

2. On détermine un inverse de a modulo n : on le notera (ici) c. On a donc :

ax ≡ b [n] ⇐⇒ x ≡ cb [n]

et l’équation est résolue.

Justifions que si d ne divise pas B, alors il n’y a pas de solution. En effet, on a Ax = B+ kN avec un certain k ∈ Z.
Comme d divise A et N, il divise Ax− kN, donc B. Contradiction.

Exercice 2. Soit m ∈ Z. Résoudre l’équation 15x ≡ m [21] d’inconnue x ∈ Z.

On a 15∧21 = 3.

• Si 3 ∤ m, alors S =∅
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• Si 3 | m, on note m′ =
m
3
∈ Z. On divise donc toute la congruence (crochet inclus)

par 3 :

15x ≡ m [21] ⇐⇒ 5x ≡ m′ [7]
⇐⇒ x ≡−4m′ [7] car (−4)×5 ≡ 1 [7]

Ainsi S =
{
−4

m
3
+7k | k ∈ Z

}
.

6 Équations diophantiennes

6.1 Définition

Définition 18.30 – Équation diophantienne

On appelle équation diophantienne une équation dont la ou les inconnues sont des entiers relatifs.

Exemple 15. Les équations suivantes sont des équations diophantiennes :

◦ L’équation 3x2 + xy = 11 d’inconnues x,y ∈ Z.

◦ L’équation
1
x
+

1
y
=

1
5

d’inconnues x,y ∈ Z.

◦ L’équation x2 + y2 = z2 d’inconnues x,y,z ∈ Z.

La résolution de ces équations est souvent non triviale. On peut invoquer des propriétés sur les nombres premiers,
on peut aussi regarder ce que donne l’égalité mise au modulo n pour un n bien choisi.

Exemple 16. Montrer que l’équation x2 + y2 = 4003 n’admet pas de solution dans Z2.

Supposons par l’absurde qu’il existe (x,y) ∈ Z2 tels que x2 + y2 = 4003. En particulier,
en passant modulo 4, on a

x2 + y2 ≡ 4003 ≡ 3 [4]

Or,

x ≡ . . . [4] 0 1 2 3
x2 ≡ . . . [4] 0 1 0 1

Ainsi, x2 est congru à 0 ou à 1 modulo 4. Il en va de même pour y. Ainsi, x2 + y2 est
congru à 0, 1 ou 2 modulo 4. On a donc x2 + y2 ̸≡ 3 [4]. Contradiction.

6.2 Équation de la forme ax+by = c

Il y a un cas particulier d’équation qu’il faut savoir traiter sans indication : les équations diophantiennes de la
forme ax+by = c avec a,b,c ∈ Z.
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Méthode – Résolution d’une équation diophantienne du type Ax+By =C

Soit A,B,C ∈ Z. On cherche à résoudre l’équation Ax+By =C d’inconnues x,y ∈ Z.

1. On détermine d = A∧B et on tente de diviser l’équation par d :

• Si d ∤C, alors il n’y a pas de solution.

• Si d |C, on pose

a :=
A
d
∈ Z b :=

B
d
∈ Z c =

C
d
∈ Z

On peut alors diviser l’équation par d : Ax+By =C ⇐⇒ ax+by = c. De plus a∧b = 1.

2. On passe l’équation au modulo b, on obtient : ax ≡ c [b], que l’on résout. On trouve que x est de
la forme x(k) = x0 +bk avec x0 ∈ Z fixé et k ∈ Z quelconque.

3. On injecte cette valeur x(k) dans l’équation ax+by = c et on trouve la valeur y(k) correspondante.
L’ensemble des solutions est alors {(xk,yk) | k ∈ Z}.

Exemple 17. Résoudre 10x+6y = 8.

On a 10∧ 6 = 2 et 2 | 8. Ainsi l’équation équivaut à 5x+ 3y = 4, qu’on va résoudre.
On passe l’équation modulo 3 : on trouve 5x ≡ 4 ≡ 1 [3]. Or, on sait que 5×2 ≡ 1 [3],
donc 2×5x ≡ 2×1 [3], i.e. x ≡ 2 [3]. D’où nécessairement x = 2+3k avec k ∈ Z.

Ensuite, 5(2+3k)+3y = 4, de sorte que 3y = 4−10−15k =−6−15k, on en déduit
que y =−2−5k. Finalement :

S = { (2−3k,−2+5k) | k ∈ Z}

7 PPCM et extension du PGCD

7.1 PPCM

Soit a,b ∈N∗. On souhaite définir le PPCM de a et b comme étantle plus petit des multiples communs strictement
positifs de a et b. Or, l’ensemble des multiples communs strictement positifs à a et b est l’ensemble

X = aZ∩bZ∩N∗

Le PPCM de a et b sera le minimum de X . Mais il faut s’assurer que ce minimum existe !

• Il est clair que X est une partie de Z.

• De plus, on a clairement ab ∈ X . On en déduit que X est non vide.

• Enfin, X est minoré par 0.

Ainsi, X est une partie non vide et minorée de Z, donc X admet un minimum par le Théorème 18.5. On en déduit
que la définition suivante a un sens.
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Définition 18.31 – PPCM

Soit a,b ∈ N∗. Le PPCM de a et b est le plus petit des multiples communs strictement positifs à a et b. On
le note a∨b.

Pour a,b ∈ Z∗, on définit le PPCM de a et b par a∨b := |a|∨ |b|.

Exemple 18. Le PPCM de 12 et de 18 est 36. En effet (on omet les multiples négatifs) :

12Z= {· · · ,12,24,36,48,60,72, · · ·} 18Z= {· · · ,18,36,54,72, · · ·}

Ainsi, 12Z∩18Z∩N∗ = {36,72, · · ·} et donc 12∨18 = 36.

Remarque (Convention a∨0 = 0). Pour tout a ∈ Z, on pose par convention 2 a∨0 = 0. Ainsi, a∨b a un sens
pour tous a,b ∈ Z.

Exemple 19. Soit a,b ∈ N

1. a∨1 = . . . . . .

2. a∨0 = 0

3. a∨b = b∨a

4. Si (a,b) ̸= (0,0), a∨b ≥ 1

5. a∨b ≤ ab

6. a∨b = b ⇐⇒ a | b

Théorème 18.32

Soit a,b ∈ Z. Alors les multiples communs à a et b sont exactement les multiples de a∨b :

aZ∩bZ= (a∨b)Z

ou encore, de manière équivalente :

∀n ∈ Z (a | n et b | n) ⇐⇒ (a∨b) | n

Théorème 18.33 – Factorisation dans un PPCM

Soit a,b ∈ Z et c ∈ N∗. Alors (ca)∨ (cb) = c(a∨b).

Démonstration. Pour montrer l’égalité de ces deux entiers (posi-
tifs), il suffit de montrer que chacun divise l’autre.

• Montrons que (ca)∨ (cb) | c(a∨b). Tout d’abord, a | a∨b
donc ca | c(a∨b). De même on montre que cb | c(a∨b). On
en déduit par le Théorème 18.32 que (ca)∨ (cb) | c(a∨b).

• On pose m = (ca)∨ (cb). Montrons que c(a∨b) | m. On sait

que ca | m, donc en particulier c | m. Ainsi, il existe m′ ∈Z tel
que m = cm′. Comme ca | m, on a donc ca | cm′, d’où a | m′.
On montre de même que b |m′. Ainsi, par le Théorème 18.32,
on a a∨b | m′. D’où c(a∨b) | cm′, i.e. c(a∨b) | m.

Théorème 18.34

Soit a,b ∈ Z. Alors
(a∨b)× (a∧b) = |ab|

2. Comme pour le PGCD, a∨ 0 a un sens si on modifie la définition de a∨ b comme étant le minimum de aZ∩ bZ∩N pour la
relation d’ordre “divise” de N. Dans ce cas, aZ∩0Z∩N= {0} et donc 0 est bien le minimum de cet ensemble (car 0 | 0). Cette nouvelle
définition est cohérente avec la définition classique du PPCM de deux entiers a et b tels que (a,b) ̸= (0,0) : dans l’exemple ci-dessus, on
a 12Z∩18Z∩N= {0,36,72, · · ·}= 36N et 36 est bien le plus petit élément de cet ensemble pour la relation “divise” car il divise tous les
autres élements de cet ensemble.
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Démonstration. Par définition du PGCD et du PPCM, il suffit de regarder le cas a,b ∈ N. L’égalité est évidente si

a = 0 ou b = 0. On suppose donc a,b ∈ N∗.

• Supposons d’abord que a∧b = 1. Il suffit donc de montrer que a∨b = ab. Tout
d’abord, ab est un multiple commun à a et b, donc par définition, (a∨ b) | ab.
Ensuite,

a | (a∨b) et b | (a∨b) et a∧b = 1

donc on en déduit (Corollaire 18.20) que ab | (a∨b). Donc ab et a∨b sont associés.
Comme ab et a∨b sont positifs, on obtient a∨b = ab.

• On se place maintenant dans le cas général. On pose d := a∧b, m := a∨b, ainsi
que a′,b′ ∈ Z tels que

a = da′ b = db′ a′∧b′ = 1

Alors, par le premier point, a′b′ = a′∨b′. En particulier, comme d ̸= 0,

da′b′ = d
(
a′∨b′

)
= (da′)∨ (db′) = a∨b = m

On a donc
d2a′b′ = dm

ou encore ab = dm. D’où le résultat.

Méthode

Pour calculer le PPCM a∨b, on peut donc calculer le PGCD a∧b puis calculer
|ab|
a∧b

.

Exemple 20. Calculer le PPCM de 195 et de 247.

On a vu que 247∧195 = 13. Ainsi,

247∨195 =
1
13

×247×195 = 19×195 = 20×195−195 = 3900−195 = 3705

7.2 PGCD de plusieurs entiers

Définition 18.35

Soit a1, · · · ,an ∈ Z. Le PGCD des entiers a1, · · · ,an est l’entier qui est leur plus grand diviseur commun.
On le note

n∧
i=1

ai := a1 ∧a2 ∧·· ·∧an

avec la convention 0∧0∧ . . .∧0 = 0.
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La notation est cohérente car on peut montrer que ∧ est associative : a1 ∧ (a2 ∧a3) = (a1 ∧a2)∧a3 donc on
peut enlever les parenthèses sans ambiguité. De plus, on peut changer l’ordre des entiers a1, · · · ,an du PGCD
comme on le souhaite.

Exemple 21. 195∧247∧18 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remarque. Si a1 = 0, on a en particulier :

a1 ∧a2 ∧ . . .∧an = 0∧ (a2 ∧ . . .∧an) = a2 ∧ . . .∧an

Sur le même principe, lorsqu’on calcule le PGCD de a1 ∧ . . .∧an, on peut exclure du calcul tous les termes ai qui
sont nuls.

Définition 18.36

Soit a1, · · · ,an ∈ Z. On dit que a1, · · · ,an sont premiers entre eux dans leur ensemble si a1 ∧·· ·∧an = 1.

On dit que a1, · · · ,an sont premiers entre eux deux à deux si pour tous i, j ∈ J1,nK, si i ̸= j, alors ai∧a j = 1.

Si a1, · · · ,an sont premiers entre eux deux à deux alors ils le sont dans leur ensemble. La réciproque est fausse :

2∧3∧6 = 1 mais 6∧3 = 3 ̸= 1

On peut généraliser à n entiers la plupart des résultats vus pour deux entiers. Les plus utiles (et au programme)
sont les théorèmes de Bézout et de Bézout-Bachet :

Théorème 18.37 – Relation de Bézout généralisée

Soit a1, · · · ,an ∈ Z. Il existe u1, · · · ,un ∈ Z tels que

a1u1 +a2u2 + . . .+anun = a1 ∧a2 ∧·· ·∧an

Théorème 18.38 – Théorème de Bézout généralisé

Soit a1, . . . ,an ∈ Z.

a1 ∧·· ·∧an = 1 ⇐⇒ ∃u1, · · · ,un ∈ Z a1u1 + . . .+anun = 1

Les preuves reposent entièrement sur une récurrence : l’exemple ci-dessous permet de mieux comprendre l’idée
de la preuve.

Méthode

Pour calculer le PGCD de n entiers a1, · · · ,an ainsi que leurs coefficients de Bézout, on se ramène à des
calculs successifs de PGCD et des coefficients pour deux entiers à la fois : d’abord entre a1 et a2, ensuite
entre a1 ∧a2 et a3, etc. Cf exemple ci-dessous.

Exemple 22. Montrer que 5, 195 et 247 sont premiers dans leur ensemble, puis trouver u,v,w ∈ Z tels que
5u+195v+247w = 1.
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On calcule d’abord le PGCD et les coefficients de Bézout de 195 et de 247. On a vu à
l’Exemple 8 que 195∧247 = 13 et que

195× (−5)+247×4 = 13

Ainsi
5∧195∧247 = 5∧ (195∧247) = 5∧13

Maintenant, on calcule le PGCD et les coefficients de Bézout de 5 et 13. Il est évident
que 5∧13 = 1 et par ailleurs

5× (−5)+13×2 = 1
=⇒ 5× (−5)+(195× (−5)+247×4)×2 = 1
=⇒ 5× (−5)+195× (−10)+247×8 = 1

si bien que (u,v,w) = (−5,−10,8) convient.

8 Nombres premiers

8.1 Définitions et lemmes préliminaires

Définition 18.39

On appelle nombre premier tout entier p ≥ 2 tel que les seuls diviseurs positifs de p sont 1 et p.
On note P l’ensemble des nombres premiers.

Autrement dit, p est premier si div(p)∩N = {1, p}. Un nombre qui n’est pas premier est appelé un nombre
composé.

Exemple 23. 1 n’est pas un nombre premier. 2 est l’unique nombre premier pair, tous les autres sont impairs.

Remarque. Si n ≥ 2 est composé (i.e. non premier), alors il existe a,b ∈ J2,n−1K tel que n = ab.

En effet, div(n)∩N ̸= {1,n}, donc il existe a ∈ J2,n−1K tel que a | n. En particulier, il existe b ∈ Z tel que n = ab.
On montre alors facilement que, comme 1 < a < n, on a aussi 1 < b < n.

Lemme 18.40

Soit a ∈ Z et p ∈ P. Ou bien p | a, ou bien p∧a = 1.

En particulier, p est premier avec tout entier qu’il ne divise pas.

Démonstration. On a p∧ a ∈ div(p)∩N = {1, p}, donc deux cas sont possibles : ou bien p∧ a = 1, ou bien
p∧a = p. Or, on a vu (Exemple 6) que p∧a = p ⇐⇒ p | a. D’où le résultat.

Théorème 18.41 – Lemme d’Euclide

Soit a,b ∈ Z et p ∈ P. Si p | ab, alors p | a ou p | b (ou inclusif !).

Corollaire immédiat : si p divise un produit a1 ×·· ·×aN , alors p divise (au moins) un des entiers a1, · · · ,aN .
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Démonstration. Supposons que p | ab. Si p | a, alors on a le résultat voulu. Supposons que p ne divise pas a. Par
le Lemme 18.40 ci-dessus, on a alors p∧a = 1. Donc par le lemme de Gauss, comme p | ab, on en déduit que
p | b.

Lemme 18.42

Soit p1, p2 ∈ P. Si p1 | p2, alors p1 = p2.

Démonstration. Comme p1 | p2, on a p1 ∈ div(p2)∩N, i.e. p1 ∈ {1, p2}. Comme p1 est premier, on a p1 ≥ 2,
donc p1 = p2.

8.2 DPFP – Existence

Le but de cette section et de la suivante est d’établir que tout entier n ≥ 2 admet une unique DPFP, i.e. une
décomposition en produits de facteurs premiers. Dans un premier temps, on établit un résultat qui permet de
déduire l’existence de cette décomposition.

Lemme 18.43

Tout entier n ≥ 2 peut s’écrire comme un produit de nombres premiers (non nécessairement distincts).
Autrement dit, il existe N ∈ N∗ et q1, · · · ,qN ∈ P tels que

n = q1 × . . .×qN

Démonstration. On procède par récurrence forte sur n.

• Initialisation : si n = 2, alors n = q1 avec q1 = 2 ∈ P. Sa décomposition en PFP est lui-même !

• Hérédité : soit n ∈ N. On suppose que tout entier k ∈ J2,nK peut s’écrire comme un produit de nombres
premiers. Montrons qu’il en est de même pour n+1.

– Si n+1 est premier, alors là encore, il est sa propre décomposition.

– Si n+ 1 n’est pas premier, alors il est composé : il existe donc a,b ∈ J2,nK tels que n+ 1 = ab. Par
hypothèse de récurrence, a et b peuvent s’écrire comme un produit de nombres premiers, donc n+1
aussi.

• Finalement, tout entier n ≥ 2 peut s’écrire comme un produit de nombres premiers.

Corollaire 18.44

Tout nombre entier n ≥ 2 admet (au moins) un diviseur premier.

Soit n ≥ 2 un entier. Par le Lemme 18.43, n admet une DPFP : on a donc

n = q1 ×q2 ×·· ·×qN avec n ∈ N∗, q1, · · · ,qN ∈ P

De plus, quitte à réindexer les entiers q1, · · · ,qN , on peut imposer que q1 ≤ . . .≤ qN . Cependant, on modifier
cette écriture en rassemblant les nombres premiers qui sont égaux : il existe donc r ≥ 1 nombres premiers
distincts p1 < p2 < .. . < pr tels que

n = pα1
1 × pα2

2 × . . .× pαr
r avec α1,α2, · · · ,αr ∈ N∗

Ceci est la forme générale de la décomposition en produits de facteurs premiers. On a obtenu l’existence
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8.3 DPFP – Unicité

Théorème 18.45

Soit n ≥ 2 un entier. Il existe un entier r ≥ 1, des nombres premiers p1 < p2 < · · · < pr et des entiers
α1,α2, · · · ,αr ∈ N∗ tels que

n = pα1
1 pα2

2 . . . pαr
r

De plus, les entiers (pi)1≤i≤r et (αi)1≤i≤r sont uniques. Les nombres premiers p1, · · · , pr sont appelés les
facteurs premiers de n.

Démonstration. L’existence découle du Lemme 18.43. Montrons
l’unicité de cette décomposition. Supposons qu’un entier n ≥ 2
admette les deux décompositions ci-dessous et montrons qu’elles
coïncident :

n = pα1
1 pα2

2 . . . pαr
r = qβ1

1 qβ2
2 . . .qβs

s

donc il faut montrer que r = s, et que ∀k ∈ J1,rK pk =
qk et αk = βk.

• Soit i ∈ J1,rK. Montrons qu’il existe j ∈ J1,sK tel que pi | q j .

Comme pi | qβ1
1 qβ2

2 · · ·qβs
s , par le lemme d’Euclide, il existe

j ∈ J1,sK tel que pi | qβ j
j . Ainsi, pi divise le produit q j · · ·q j︸ ︷︷ ︸

β j fois

.

En appliquant à nouveau le lemme d’Euclide, on a pi | q j .

• Comme pi | q j et que q j est premier, on en déduit que
(Lemme 18.42) pi = q j . Ainsi, chaque pi est égal à un q j
et un seul (car les q j sont tous distincts). Réciproquement,
chaque q j est égal à un et un seul pi. On en déduit que
r = s. De plus, comme les familles (pi) et (q j) sont stricte-
ment croissantes, on a nécessairement p1 = q1, p2 = q2, · · · ,
pr = qr .

• Par ce qui précède, on a donc

(n =) pα1
1 pα2

2 . . . pαr
r = pβ1

1 pβ2
2 . . . pβr

r

Supposons par l’absurde que α1 ̸= β1, par exemple α1 < β1.
Alors en divisant l’égalité par pα1

1 , on trouve que :

pα2
2 . . . pαr

r = pβ1−α1
1 ×

(
pβ2

2 . . . pβr
r

)
= p1 ×

(
pβ1−α1−1

1 pβ2
2 . . . pβr

r

)
︸ ︷︷ ︸

∈Z

Donc p1 divise pα2
2 . . . pαr

r . Comme à la première étape de
la preuve, cela entraine qu’il existe j ≥ 2 tel que p1 | p j .
Comme p1, p j sont premiers, on a p1 = p j . Or, c’est im-
possible puisque j ≥ 2 et que les nombres p1, · · · , pr sont
distincts. Contradiction. Donc α1 = β1. En divisant l’égalité
par pα1

1 , on obtient donc :

pα2
2 . . . pαr

r = pβ2
2 . . . pβr

r

et on montre de même que α2 = β2, etc. En réitérant le
processus, on en conclut que (α1, · · · ,αr) = (β1, · · · ,βr).

Finalement, r = s et ∀k ∈ J1,rK pk = qk et αk = βk. Les
deux décompositions sont donc bien égales.

Exemple 24. Décomposer 1400 en produits de facteurs premiers.

1400 = 14×100 = 2×7×4×25 = 2×7×22 ×52 = 23 ×52 ×7

Corollaire 18.46

Il existe une infinité de nombres premiers.

Démonstration. Supposons par l’absurde qu’il n’existe qu’un nombre fini n de nombres premiers distincts, notés
p1, · · · , pn. Notons que n ≥ 1 car (par exemple) 2 est premier. On pose

N := p1 p2 · · · pn +1

Comme n ≥ 1, on a N ≥ 2, donc N admet un diviseur premier qui est forcément parmi p1, · · · , pn. Supposons que
ce diviseur soit p1 (la preuve sera identique dans les autres cas). Ainsi, p1 | N et par ailleurs p1 | p1 p2 · · · pn. Donc
p1 divise N − p1 p2 · · · pn, c’est-à-dire 1. D’où p1 ∈ {−1,1}, ce qui est absurde. Ainsi, l’ensemble des nombres
premiers est infini.
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8.4 Valuation p-adique

Définition 18.47

Soit p ∈ P. Pour tout entier n ∈ N∗, on appelle valuation p-adique de n, la puissance de l’entier p qui
apparait dans la DPFP de n, et on la note vp(n).
Si p n’apparait pas dans la DPFP de n, on pose vp(n) = 0.

Alternativement, vp(n) peut être défini comme le plus grand entier k ∈ N tel que

pk | n et pk+1 ∤ n

On a toujours vp(n) ∈ N.

Définition 18.48 – Décomposition généralisée

Pour tout n ∈ N∗, on a :
n = ∏

p∈P
pvp(n)

On appelle cela la DPFP généralisée de n.

Exemple 25. ◦ Comme 90 = 21 ×32 ×51, on a v2(90) = v5(90) = 1 et v3(90) = 2. Les autres valuations sont
nulles.

◦ Si p est un nombre premier et α ∈ N, vp(pα) = . . .

Remarque. La décomposition généralisée de n est un produit infini (car P est infini), mais en pratique seul un
nombre fini de termes du produit sont différents de 1. Cette décomposition est là encore unique.

Théorème 18.49

Soit a,b ∈ N∗.
a | b ⇐⇒ ∀p ∈ P vp(a)≤ vp(b)

a = b ⇐⇒ ∀p ∈ P vp(a) = vp(b)

De plus, pour tout nombre premier p,

1. vp(ab) = vp(a)+ vp(b) et en particulier vp(an) = nvp(a) pour tout n ∈ N∗.

2. vp(a∧b) = min(vp(a),vp(b))

3. vp(a∨b) = max(vp(a),vp(b))

Démonstration. On ne prouve que l’assertion 1. Pour tout p∈P, on pose αp = vp(a) et βp = vp(b).
Par la décomposition généralisée,

a = ∏
p∈P

pαp = 2α23α35α5 . . . b = 2β23β35β5 . . .

donc par associativité du produit :

ab = 2α2+β23α3+β35α5+β5 . . .= ∏
p∈P

pαp+βp
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On en déduit que pour tout p ∈ P, vp(ab) = αp+βp = vp(a)+vp(b). Donc l’assertion
1 est vraie.

Méthode

On peut calculer un PGCD et un PPCM à partir de la décomposition en produits de facteurs premiers, cf
exemple ci-dessous.

Exemple 26. Calculer le PGCD et le PPCM de 360 et 315.

Décomposons 360 et 315 en produits de facteurs premiers :

360 = 10×36 315 = 5×63

= 2×5×62 = 5×7×9

= 23 ×32 ×51 ×70 = 20 ×32 ×51 ×71

Ainsi,
360∧315 = 20 ×32 ×51 ×70 = 45

360∨315 = 23 ×32 ×51 ×71 = 360×7 = 2520

Exemple 27. Combien 1400 a-t-il de diviseurs positifs ? Et de diviseurs de signe quelconque ?

On a vu dans un exemple précédent que 1400 = 14×100 = 23 ×52 ×7. Soit d ∈ N∗.
d est un diviseur de 1400 si et seulement si

d = 2α5β 7γ

avec α ∈ J0,3K, β ∈ J0,2K et γ ∈ J0,1K. Il y a donc 4 choix possibles pour α , 3 pour β

et 2 pour γ . De plus, par unicité de la décomposition, chaque triplet (α,β ,γ) donne
un diviseur différent. On a donc 4×3×2 = 24 diviseurs positifs.
Les diviseurs de signe quelconque sont donc au nombre de 48.

Exemple 28. Soit a,b ∈ N∗. Montrer que a3 ∧b3 = (a∧b)3.

Il suffit de montrer que pour tout p ∈ P, on a vp(a3 ∧b3) = vp((a∧b)3). Or,

vp((a∧b)3) = 3vp(a∧b) = 3×min(vp(a),vp(b))

vp(a3 ∧b3) = min(vp(a3),vp(b3))

= min(3vp(a),3vp(b))
= 3min(vp(a),vp(b))

On a donc bien le résultat voulu.
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8.5 Vérifier rapidement si un nombre est premier

Soit un entier n ≥ 2 dont on veut savoir s’il est premier.

• Méthode longue : vérifier si pour tout k ∈ J2,n−1K on a bien k ∤ n, donc de vérifier que div(n)∩N= {1,n}.

• Méthode moins longue : vérifier si pour tout nombre premier p ≤ n−1, on a bien p ∤ n.

• Méthode optimale : vérifier si pour tout nombre premier p ≤
√

n, on a bien p ∤ n.

Exemple 29. Est-ce que 89 est un nombre premier ?

On a
√

89 ≤
√

100 = 10, donc n sera premier si aucun nombre premier inférieur à 10
ne divise n, càd si n n’est pas divisible par 2, 3, 5 ou 7. On peut vérifier que c’est le cas
de 89.

8.6 Petit théorème de Fermat

Lemme 18.50

Soit p un nombre premier. Pour tout k ∈ J1, p−1K, on a

p |
(

p
k

)

Démonstration. On a (
p
k

)
=

p(p−1)× . . .× (p− k+1)
k!

En particulier,

p× [(p−1)× . . .× (p− k+1)] =
(

p
k

)
× k!

Ainsi, p divise

(
p
k

)
×k!. Or, p est premier donc p ne divise aucun entier de 1 à k. Il est

donc premier avec tous les entiers de 1 à k donc avec leur produit. Ainsi p∧ (k!) = 1.

Par le lemme de Gauss, on en déduit que p |
(

p
k

)
. D’où le résultat.

Corollaire 18.51

Pour tous a,b ∈ Z, on a :
(a+b)p ≡ ap +bp [p]

Démonstration. Par la formule du binôme, on a

(a+b)p = ap +bp +
p−1

∑
k=1

(
p
k

)
akbp−k

Puisque p |
(

p
k

)
pour tout k ∈ J1, p−1K, en passant modulo p dans l’équation, on a bien (a+ b)p ≡ ap +

bp [p].
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Théorème 18.52 – Petit théorème de Fermat

Si p est un nombre premier et a ∈ Z, alors
ap ≡ a [p]

De plus, si a∧ p = 1, alors
ap−1 ≡ 1 [p]

Démonstration. Si ap ≡ a [p] et a∧ p = 1, alors on peut diviser par
a dans la congruence (crochet exclu) et en déduire que ap−1 ≡ 1 [p].
Il suffit donc de montrer que ap ≡ a [p].

On fait d’abord la preuve pour a ∈ N, par récurrence sur a.
• Si a = 0, alors 0p = 0 donc 0p ≡ 0 [p]. La propriété est vraie

au rang 0.
• Supposons que ap ≡ a [p] pour un a ∈ N, et montrons que

(a+1)p ≡ a+1 [p]. Par le lemme ci-dessus, comme p est
premier,

(a+1)p ≡ ap +1p [p]

≡ a+1p [p] par hypothèse de récurrence

≡ a+1 [p]

Donc la propriété est vraie au rang a+1.

• Finalement, pour tout a ∈ N, ap ≡ a [p].
Faisons enfin la preuve pour a ∈Z\N. Comme p ≥ 2, il existe k ∈N
(assez grand) tel que a+ kp ≥ 0. On pose alors a′ := a+ kp. Par
construction, a′ ≡ a [p] et donc (a′)p ≡ ap [p]. De plus, comme
a′ ≥ 0, on a montré que (a′)p ≡ a′ [p]. Ainsi, ap ≡ (a′)p ≡ a′ ≡
a [p].

Exemple 30. Quel est le reste de la division euclidienne de 142024 par 11 ?

Par le petit théorème de Fermat, comme 11 est premier et que 11∧ 14 = 1, on a
1411−1 ≡ 1410 ≡ 1 [11]. Or, 2024 = 10×202+4 donc

142024 ≡
(

1410
)202

×144 ≡ 1202 ×144 ≡ 144 [11]

Or, 14 ≡ 3 [11] d’où 144 ≡ 34 ≡ 81 ≡ 4 [11]. Finalement, 142024 ≡ 4 [11] et comme
0 ≤ 4 < 11, 4 est bien le reste de la division euclidienne recherché.
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9 Méthodes pour les exercices

Méthode

Pour montrer que deux entiers a et b sont premiers entre eux, on peut :

• Poser d = a∧b et montrer que d divise 1.

• Utiliser le théorème de Bézout.

• Supposer par l’absurde que a∧b ̸= 1. Alors il existe un nombre premier p qui divise a∧b, donc qui
divise a et b. En déduire une contradiction.

Méthode

Pour calculer le PGCD de deux entiers a et b, on peut :

• Appliquer l’algorithme d’Euclide.

• Décomposer a et b en produits de facteurs premiers.

• Si on estime que a et b sont premiers entre eux, on peut utiliser la méthode précédente.

Cette méthode s’adapte également au calcul de PPCM, et on peut par ailleurs utiliser la formule (a∧
b)(a∨b) = ...

Il faut connaitre les méthodes pour résoudre une équation de congruence (forme ax ≡ b [n]), une équation
diophantienne (forme ax+by = c) sans les confondre !
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