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Arithmétique

1 Relation de divisibilité

| Définition 18.1 — Relation “divise” |

On définit sur Z une relation binaire, notée |, de la maniére suivante : pour tous a,b € Z,

bla <= FkeZ a=bk

div(a) :={b€Z | 3Ike€Z a=Dbk}

Lensemble bZ := {bk | k € Z} correspond al'’ensemble des multiples de b.
Exemple 1. div(5)=.....................

Exemple 2. Quelques propriétés “immédiates” des ensembles de diviseurs :

1. div(0) =...... 4. Va€Z div(—a) = div(a).
2. div(l) =div(-1)=...... 5. VaeZ* div(a) C [—a,d]
3.VaeZ —1|a et 1]|a 6. Vac Z* 0 ¢ div(a). Par contre, 0 € div(()0).

On dit que b divise a, ou encore que a est un multiple de b. Lensemble des entiers qui divisent a se note :

La relation “divise” sur Z est réflexive et transitive. Toutefois, elle n’est pas symétrique (1 | 2 mais 2 1 1) ni

antisymétrique (cf ci-dessous). Ce n’est donc ni une relation d’équivalence, ni une relation d’ordre.

Théoréeme 18.2 - “Pseudo-antisymétrie” de la division sur Z

Soita,b € Z. Alors
(a|b et bla) < |a|=|b]|

Dans ce cas, les entiers a et b sont dits associés.

Remarque. En revanche, la relation “divise” définie sur N est une relation d’ordre.

Théoréme 18.3 |

Soita,b,c,d € 7.
1. (d|a et d|b) = Yu,veZ d|(au+bv)
2.a|lb = albc
3. (a|b et c¢|d) = ac|bd
4

. Sic#0,alorsa | b <= ac|bc (division par ¢ non nul de part et d’autre du “divise”)

Démonstration. Montrons la premiére propriété.

Les preuves des autres assertions sont assez immeédiates et laissées en exercice.
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2 Division euclidienne dans Z

| Lemme 18.4 |

Soit (x,) une suite a valeurs dans Z. Alors (x,) est convergente si et seulement si (x,) est stationnaire.

Démonstration. Si (x,) est stationnaire, elle est constante a partir
d’un certain rang, donc est évidemment convergente. Réciproque-
ment, supposons que (x,) est convergente et montrons qu’elle est
stationnaire.

Notons ¢ = limx, € R. Par la définition de la limite, si on prend
e =1/3, il existe N € N tel que pour toutn > N

1 :
\xn—é\ggzs donc  x, € [6—3, 3

| Théoréme 18.5 |

1 1
Posons J := {(, %’L/+ ﬂ . J contient un entier car xy € ZNJ.

2
Or, J est de longueur 3 donc J contient au plus un entier. Ainsi,

JNZ = {xn}. Or, pour tout n > N, on a x, € ZNJ, si bien que
X, = xn. Ainsi, x,, est stationnaire (et en particulier ¢ = xy). |

Toute partie non vide et majorée de| Z
Z

Toute partie non vide et minorée de

admet un maximum.

admet un minimum.

Démonstration. On ne prouve que la premiere assertion. Soit
X C Zune partie non vide et majorée. Comme X C R, X admet une
borne supérieure, qu'on note M. Pour conclure, il suffit de montrer
que M € X. Par caractérisation de la borne supérieure, il existe une

Théoréme 18.6 — Division euclidienne |

suite (x,) a valeurs dans X telle que x, — M. En particulier, (x,)
est a valeurs dans Z. Par le Lemme 18.4, on en déduit que (x;,) est
stationnaire. Ainsi, x, = M a partir d’'un certain rang. On en déduit
queM € X. O

Soit a,b € Z tels que b # 0. Alors il existe un unique couple (q,r) € 72 tel que
a=bg+r et

e g estappelé le quotient de la division euclidienne de a par b.

e rest appelé le reste de la division euclidienne de a par b.

0<r<|b|

Démonstration.



Existence — On pose X := bZ N | —co,a]. Comme b # 0, on montre
facilement que X est non vide. De plus X C Z et X est majorée par
a. Par conséquent, X admet un plus grand élément par le Théo-
réme 18.5. On pose M := maxX. Comme M € X, il existe g € Z tel
que M = bg et M < a. On pose

ri=a—bqecZ

Comme bg = M < a, il est clair que r > 0. Pour conclure, il suffit de

a
Remarque. On peut montrer que si b > 0, le quotient g de la division euclidienne est donné par g = %J .

montrer que r < |b|. Supposons par I'absurde que r > |b|. Alors
a=>bq+r>bg+ b

Comme bq + |b| € bZ, on en déduit que bg+ |b| € X. Or, M = bg <
bq + |b|, ce qui contredit le fait que M majore X. Ainsi, r < |b| et
I'existence d’un tel couple (g, r) est vérifiée.

O

b

Exemple 3. Calculer la division euclidienne de 539 par 17.

Exemple 4. Quelle est la division euclidienne de 17 par 539 ?

| Théoréme 18.7 |

Soit (a,b) € ZxZ*.Ona b|a

si et seulement si le reste de la division euclidienne de a par b est nul.

Remarque. En langage Python, les instructions
reste de la division euclidienne de a par b.

3 PGCD

3.1 PGCDdans N

a//b

et a%b renvoientrespectivement le quotient et le

Soit a,b € N tels que (a,b) # (0,0). On souhaite définir le PGCD de a et b comme étant le plus grand diviseur
commun a a et a b. Or, 'ensemble des diviseurs communs a a et b est 'ensemble

X = div(a) Ndiv(b)

Le PGCD de a et b sera le maximum de X. Mais il faut s’assurer que ce maximum existe !

e Puisque div(a) et div(b) sont des parties de Z, il en va de méme pour X.

e Deplus, 1 |aetl|bdonc1 € X.Onen déduit que X est non vide.

e Enfin, montrons que X est majoré. Comme (a,b) # (0,0), on aa # 0 ou b # 0. Supposons par exemple
que a # 0. Alors div(a) C [—a,a]. Comme X C div(a), on en déduit que X C [—a,a]. Donc X est majoré

(par @). La preuve est similaire dans le cas b # 0.
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Ainsi, X est une partie non vide et majorée de Z, donc X admet un maximum par le Théoréme 18.5. On en déduit
que la définition suivante a un sens.

Définition 18.8 - PGCD |

Soita,b € N tels que (a,b) # (0,0). On définit le PGCD de a et b comme le plus grand entier qui divise a E
la fois a et b. Il est noté a N\ b. "

On notera que, par unicité du maximum, le PGCD est unique.
Exemple 5. Le PGCD de 12 et de 18 est 6. En effet (on omet les diviseurs négatifs) :
div(12) ={---,1,2,3,4,6,12} div(18) ={---,1,2,3,6,9,18}
Ainsi, div(12)Ndiv(18)={---,1,2,3,6}
sibien que 12A 18 = 6.

Remarque (Convention 0 A0 = 0). On pose par convention' 0 A0 = 0. Ainsi, a A b a un sens pour tous a,b € N
(et méme a,b € Z comme on le verra plus loin).

Exemple 6. Soita,b € N.

l.anl=.... 4. Si(a,b) # (0,0),alorsaAb > 1
2. anN0=....
3. aANb=bAa 5. aANb=b <= b]|a

Théoréme 18.9 |

Soita,b € N. Soit g,r € N tels que a = bg + r. Alors

div(a) Ndiv(b) = div(b) Ndiv(r) et aNb=bAr

Démonstration.

O

1. Techniquement, le PGCD de 0 et 0 n’a pas de sens car div(0) Ndiv(0) = ZNZ = Z et Z n'admet pas de maximum. Cependant,
on peut aussi définir a A b comme étant le maximum de X = div(a) Ndiv(h) NN pour la relation d’ordre “divise” sur N. Dans ce cas,
div(0) Ndiv(0) NN = N et 0 est bien le maximum de N pour “divise” car 0 majore tous les entiers naturels pour la relation “divise” (tout
entier naturel divise 0). Cette nouvelle définition est cohérente avec la définition classique du PGCD de deux entiers a et b tels que
(a,b) # (0,0) : dans I'exemple ci-dessus, on a div(12) Ndiv(18) "N = {1,2,3,6} et 6 est bien le plus grand élément de cet ensemble pour
la relation “divise”.
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Théoréme 18.10 |

ou encore, de maniere équivalente :

Soit a,b € N. Les diviseurs communs a a et b sont exactement les diviseursde a A b :

div(a) Ndiv(b) = div(a A b)

VneZ (n|a et n|b) < n|(anb)

De plus a A b est le seul entier positif qui vérifie 'une des assertions ci-dessus.

Démonstration. On va montrer I’assertion suivante pour tout b €
N:
Hy : VaeN  div(a)Ndiv(b) = div(a AD)

On procede par récurrence forte sur b € N. O

e Initialisation : Si b = 0, alors d’'une part div(a) Ndiv(b) =
div(a) NZ = div(a) et d’autre part a = a A b donc div(a A
b) = div(a). Donc Hy est vraie.

e Hérédité : Soit by € N. On suppose que pour tout b < by,
I'assertion H), est vraie. Montrons que Hp, ;| est vraie. Pour
simplifier, on pose B = by + 1. Soit a € N. Montrons que
div(a) Ndiv(B) = div(a A B). De par la division euclidienne
de a par B (possible car B # 0), il existe ¢, r € Z tels que

a=Bq+r et 0<r<|B|=B
Or, par le lemme précédent,onaa AB = BAret

div(a) Ndiv(B) = div(B) Ndiv(r) ()

3.2 Algorithme d’Euclide

Or, comme r < B, on a r < by donc par hypothese de récur-
rence, l'assertion H, est vraie :

Va' e N  div(d)Ndiv(r) = div(a A7)

En particulier, (pour ¢’ = B), on en déduit que div(B) N
div(r) = div(B A r). On en déduit avec () que

div(a) Ndiv(B) = div(BAr)
=div(aAB) caraAB=BAr

Par arbitraire sur a, on a montré que Hp est vraie, i.e. que
Hp, 11 estvraie.

e Conclusion : la propriété H;, est vraie pour tout b € N.

L'algorithme d’Euclide permet de calculer un PGCD en effectuant des divisions euclidiennes successives. Le
calcul de a A b est immédiat si @ ou b vaut 0, ¢’est pourquoi on suppose a,b € N* dans la méthode.

Méthode - Algorithme d’Euclide

Soit a,b € N*. Quitte a échanger a et b, on suppose b < a.

(...)

o g ke WD

1. On fait la division euclidienne de a par b : on trouve un reste r;.
Puis on fait la division euclidienne de b par r; : on trouve un reste r;.

Puis on fait la division euclidienne de r; par r; : on trouve un reste r3, etc.

On s’arréte dés qu’on trouve un reste nul : r, = 0 avec k > 1.

Alors, le PGCD de a et b est le dernier reste non nul qu’on a obtenu, a savoir :

re—1 =aAlb (avec la convention ry = b)

Démonstration. En effet, on a div(r;) = div(0) = Z, donc, par le Théoréme 18.9

div(a) Ndiv(b) = div(b)Ndiv(r;) = ... = div(rg—1) Ndiv(rx) = div(re—1)NZ = div(ry—;)

si bien que ry_; = a A b par le Théoréme 18.10.

O
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Exemple 7. Calculer le PGCD de 195 et 247.

L'algorithme d’Euclide est un grand classique qu’il faut savoir coder en Python !

def euclide(a,b):

"""Calcule le PGCD de deux entiers naturels a et b."""

while b!=0:
a, b =0>b, a%b
return a

3.3 PGCD de deux entiers relatifs

Définition 18.11 |

Soita,b € Z. On définit le PGCD de a et b par :

# (a,b)-->(b,r1)-->(r1,r2)-->(r2,r3)-->

-->(PGCD, 0)

alb:=|a|\|b]| !

Ainsi, il est suffisant de savoir calculer le PGCD de deux entiers naturels pour traiter le cas général.

3.4 Relation de Bézout / Théoréme de Bézout-Bachet

Théoréeme 18.12 - Relation de Bézout / Théoréme de Bézout-Bachet |

Soita,b € 7.1l existe u,v € Z tels que

au+bv=aNb

Les entiers u et v sont appelés des coefficients de Bézout de a et b.

Démonstration. Montrons d’abord la propriété pour tous a,b € N.

Il suffit de montrer I'assertion suivante pour tout b € N :
Hy : VaeN duvelZ

On procede par récurrence forte sur b € N.
e Initialisation : si b = 0, alors pour touta € NyonaaAb =a,
donc le couple (#,v) = (1,0) convient. Ainsi, H est vraie.
e Hérédité : soit by € N. On suppose que H), est vraie pour tout

au+bv=alb

b < by. Montrons Hy, 4 1. Pour simplifier on pose B = by + 1.

Soita € N. De par la division euclidienne de a par B (qui est
bien non nul), il existe ¢, r € Z tels que
a=Bg+r et 0<r<B

On aalorsaAB = BAr.Deplus, comme r < B,onar < by
donc I'assertion H, est vraie, a savoir

Vd eN* 'V eZ du +r/ =d nr
En particulier, (avec d = B), il existe u', Vv € Z tels que
Bu' +r/ =BAr = Bu'+(a—Bgq)V' =aAB
= a4+ B (L/ - qv/) =aAB

si bien que le couple (u,v) := (v,u’ — ¢v') convient. Finale-
ment Hp est vraie.
Ainsi, Hj, est vraie pour tout b € N. On a donc montré le théoreme
de Bézout-Bachet dans le cas a,b € N. Maintenant, montrons-le
pour tous a,b € Z. Comme |a| et |b| sont des entiers positifs, par ce
qui précede, il existe u,v € Z tels que |a|u+ |b|v =a A b.

e Sia<0eth >0, comme |a| =—a,ona
a(—u)+bv=lalu+|blv=anb
On en déduit que —u et v sont des coefficients de Bézout de

aetbh.

e Les autres cas selon les signes de a et/ou b peuvent étre
traités par les mémes arguments.

Finalement, la propriété est vérifiée pour tous a,b € Z. O

G. Peltier
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Remarque. Les coefficients u et v ne sont pas uniques : si au + bv = a A b, alors pour tout k € Z, on vérifie que
a(u+bk)+b(v—ak) = aNb, donc u+ bk et v— ak sont aussi des coefficients de Bézout de a et b.

Méthode - Algorithme d’Euclide étendu

On peut calculer les coefficients de Bézout avec I'algorithme d'Euclide étendu, cf exemple ci-dessous.

Exemple 8. Calculer 247 A 195 puis trouver un couple (u,v) € 7* tel que 247u+ 195v = 247 A 195.

| Méthode |

Pour montrer que deux entiers positifs m et n sont égaux, on peut montrer que m | n et n | m (ce qui conclut
car “divise” est une relation d’ordre sur N).

Théoréeme 18.13 — Factorisation par un entier dans le PGCD

Soita,b € Z et c € N*. Alors (ca) A (cb) = c(a A D).

Démonstration.



4 Entiers premiers entre eux

4.1 Définition et théoréme de Bézout

Définition 18.14 — Entiers premiers entre eux
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Autrement dit, a et b sont premiers entre eux si les seuls diviseurs communs a a et b sont —1 et 1.

Théoréme 18.15 — Théoréme de Bézout |

Soita,b € 7.
aNb=1 < JuveZ aut+bv=1

e Il ne faut pas confondre la relation de Bézout (Théoreme 18.12) et le Théoréme de Bézout. Pour tous
a,b,de€Z:

Relation de Bézout : d=aNlb du,veZ au+bv=d
Théoréme de Bézout : l=aANb Ju,veZ au+bv=1

Démonstration. Le sens direct est une conséquence immédiate du théoreme de Bézout-Bachet.

Exemple 9. Soita € Z. Montrer que a et a + 1 sont premiers entre eux.

Théoréme 18.16 — Se ramener a des entiers premiers entre eux

Soit a,b € Z tels que (a,b) # (0,0). Sion pose d’ = % €Zeth = € Z, alors d’ et b’ sont premiers
a

entre eux.

a

et

En définitive, les entiers
alb alb

sont toujours premiers entre eux.
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Démonstration.

Définition 18.17

On dit qu'une fraction est irréductible si son numérateur et son dénominateur sont premiers entre eux.
On ne peut alors plus la “simplifier”.

Remarque. Soit (a,b) € Z x " (avec a,b non nécessairement premiers entre eux). Alors, par le Théoréeme qui
/

précede, une écriture irréductible de 9 estla fraction = avecd' = —— eth = .
b v alb alb
~195 =1
Exemple 10. Comme (—195) A247 = 13, la fraction a7 S€ simplifie en une fraction irréductible : 21437 =
13
—15
19 °

, . .15 ) PP . o
Remarque. Dans I'exemple ci-dessus, la fraction =T est également irréductible, mais en général on prend un

dénominateur positif, ce qui garantit 'unicité.

4.2 Trois corollaires du théoréme de Bézout

Corollaire 18.18 — Lemme de Gauss |

Soit a,b,c € Z. Si a divise bc et si a est premier avec b, alors a divise c.

) al bce
Autrement dit : — alc
aNb=1
Démonstration.
O
Corollaire 18.19

Soita,by,by € Z. Si a est premier avec les entiers b| et by, alors a est premier avec leur produit b, b;.

Aby =1
Autrementdit: 4! =  aA(biby) =1
alNby =1
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Démonstration.
O
Corollaire 18.20 |
Soit a,b,c € Z. Si a divise c, si b divise c et si a et b sont premiers entre eux alors ab divise c.
alce
Autrementdit: < b|c = ab|c
anb=1
Démonstration.
O

Exemple 11. Soitn € Z. Puisque 2 et 3 sont premiers entre eux,ona (2 |n et 3|n) = 6|n, etc’est méme
une équivalence.

5 Congruences

5.1 Définition et relation d’équivalence

Définition 18.21 — Congruences

Certains auteurs notent parfois « = b (mod n). Voici plusieurs caractérisations de cette définition :

a=bn < Fk€Z a—-b=kn
< dke€Z a=b+kn

G. Peltier 11/28
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Exemple 12. o 10=3=-4177].
o a =0 [n] si et seulement si a est divisible par n. Par exemple a = 0 [2] ssi a est pair.

o Résoudre I'équation x =2 [7].

Théoréme 18.22 — Relation “congru modulo »n”

Soita,b € Z et un entier n > 2.
1. Larelation “congru modulo »n” est une relation d’équivalence :
e a=a n|
e sia=b [n],alorsb=a [n].
e sia=b [n]etb=c [n],alorsa =c [n].
2. a =b [n] si et seulement si a et b ont le méme reste quand on réalise leur division euclidienne par .

3. Iy adonc n classes d’équivalence pour la relation “congru modulo n” :

0,1,---,n—1

(Une classe pour chaque reste possible)

5.2 Opérations et congruences

Théoréme 18.23 — Opérations sur les congruences

Soita,b,c,d € 7 et un entier n > 2.

1. On peut additionner, soustraire ou multiplier les congruences :

_, a+c=b+d [n]
{“id[n] = ya—c=b—d[n]
c=d [n] ac = bd [n]

2. On peut ajouter / retrancher autant de fois n que I'on souhaite dans une congruence :

a=bn = Vk€Z a+kn=>b n|

La premiére assertion entraine notamment (par somme, différence ou produit de a = b [n] avec lui-méme) :

Vk€Z ka=kb [n]
_b[l’l] * k — 1k
Vk e N* a* =b" [n]

Démonstration. On ne montre que le premier point, pour la Doncona:
somme et le produit :

{n|(a+c)f(b+d)

a=b[n] nla—b n|ac—bd
{C;d [n] {n lc—d {Eﬁ;i}(i;f+d> [n]

nl(a—b)+(c—d)
n|(a—b)xd+(c—d)xa O
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Exemple 13. Montrer que 9°°%° = —1 [10].

Définition 18.24 — Tableaux de congruence

bl
—_
\o}
(O8]

ot1, pour chaque valeur de k, on remplit la case vide par une valeur de [0,n — 1] qui est congrue a * modulo n.

Théoréme 18.25 — Cyclicité du tableau de congruence

Les valeurs (de la seconde ligne) du tableau de congruence forment un cycle. De plus, sia An =1, 'une
de ces valeurs est 1.

Démonstration. Admise en MPSI, démontrée en MP. O

| Méthode |

Pour déterminer a quoi est congru a” modulo »n pour de grandes valeurs de m, on peut remplir un tableau
de congruence :

1. SiaAn =1, on peut s'arréter dés qu'on a trouvé k tel que a* = 1 [n] oud* =n—1= —1 [n], cf
ci-dessous.

2. Sinon, on peut exploiter le caracteére cyclique du tableau.

72019

Exemple 14. Déterminer le reste de la division euclidienne de par 22.



5.3 Congruence et “division”

9 ,3
Attention la division dans une congruence n’est pas autorisée en général: 9 =3 [6] mais 3 E = 3 [6]. Par

contre, si a, b et n sont tous divisibles par un entier d € N*, alors la division est possible :

Théoréme 18.26 — Division - crochet inclus |

Soitx,y€Z,a € Z" etn>2unentier. Ona ax=ay [an] <= x=y [n].

Parexemple 9=3[6] — 3=1][2].

Cette division est possible seulement si le facteur a est déja présent dans le crochet et dans les deux membres,
ce qui est assez restrictif. Par exemple, si on souhaite résoudre 5x = 2 [7], on ne peut pas “diviser par 5” cette
équation. Il faut donc faire autrement. Plutét que de diviser par 5, on va multiplier... par I'inverse de 5 ! Mais un
inverse modulo n, cf ci-dessous.

Définition 18.27 — Inverse modulo n

Soita € Z et un entier n > 2. On dit que @ admet un inverse modulo n s'il existe ¢ € Z tel que ac = 1 [n].
Un tel entier ¢ est appelé un inverse de @ modulo n.

Il n'y a pas unicité de I'inverse : siac = 1 [n], alors pour toutk € Z a(c+kn) =1 [n]

Théoréeme 18.28 — Passage a l'inverse dans une congruence

Soit a € Z et un entier n > 2. Alors a admet un inverse modulo 7 si et seulementsia An = 1.
Dans ce cas, si on note c cet inverse, alors

Vx,b€Z ax=b [n] <= x=bc [n]

Méthode - Trouver un inverse de « modulo n |

Soita € Z et un entier n > 2 tels que a An = 1. Pour trouver un inverse de a modulo #, on peut :
e Chercher un inverse “évident”, parmi les entiers de [1,n — 1].

e Calculer un couple de coefficients de Bézout (u,v) tels que au+nv=1.Dans ce cas, au =1 [n],
donc u est un inverse de a modulo 7.

Exercice 1. Résoudre (dans Z) I'équation 5x =2 [7].
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Corollaire 18.29 - Division - crochet exclu |

Soitx,y,a € Zetn>2unentier.Si| aAn=1 | alors ax=ay [n| < x=y [n].

Démonstration. Comme a An = 1, 'entier a admet un inverse modulo n, qu’on note ¢. On a donc ac = 1 [n],
donc en particulier ¢ # 0. Alors

ax=ay [n] <= cax=cay [n] <= x=y [n] carca =1 [n]

Méthode — Résoudre une équation sur les congruences

Etant donné A, B,N € Z, on cherche & résoudre Ax = B [N] d’inconnue x € Z.
1. On détermine d := A A N et on tente de diviser la congruence crochet inclus par d :

e Sid ne divise pas B, il n'y a pas de solution.
e Sid | B, on pose
A B N
=—€Z b:=—¢€Z =—€cZ
a p S Pl € n 4 €
On peut alors diviser la congruence pard: Ax=B [N] <= ax=b [n].DeplusaAn=1.

2. On détermine un inverse de ¢ modulo 7 : on le notera (ici) c. On a donc :
ax=b [n] <= x=cb [n]

et I’équation est résolue.

Justifions que si d ne divise pas B, alors il n'y a pas de solution. En effet, on a Ax = B+ kN avec un certain k € Z.
Comme d divise A et N, il divise Ax — kN, donc B. Contradiction.

Exercice 2. Soit m € 7. Résoudre 'équation 15x = m [21] d'inconnue x € Z.



6 FEquations diophantiennes

6.1 Définition

Définition 18.30 — Equation diophantienne

o
=]
[N
=}
o
(1‘
o
o}
o]
c
)
jm
@]
B
(o8
=5
]
=
=
I
=)
=
]
=}
B
(]
c
=}
]
>
Q
c
o
=
@]
=}
(o8
]
=}
~+
)
]
c
—
[¢”)
»
=
(@]
@]
=}
=}
(=
(93
»
»
@]
=)
—+
(e}
[¢”]
»
[¢]
=}
jm
[¢]
—
7]
—
o,
o
=
28

Exemple 15. Les équations suivantes sont des équations diophantiennes :

o L'équation 3x? +xy =11 d’'inconnues x,y € Z.

S B U
o L'équation — + — = — d’'inconnues x,y € Z.
x y 5

o L'équation 2+ y2 = 7% d’'inconnues X, ¥,z € Z.

Larésolution de ces équations est souvent non triviale. On peut invoquer des propriétés sur les nombres premiers,
on peut aussi regarder ce que donne I'égalité mise au modulo n pour un n bien choisi.

Exemple 16. Montrer que I’équation X+ y2 = 4003 n’admet pas de solution dans 72,

6.2 Equation delaforme ax+ by = c

Il'y a un cas particulier d’équation qu’il faut savoir traiter sans indication : les équations diophantiennes de la
forme ax+ by = c aveca,b,c € Z.
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Méthode — Résolution d’'une équation diophantienne du type Ax+ By =C

Soit A, B,C € Z. On cherche a résoudre I'équation Ax + By = C d’'inconnues x,y € Z.
1. On détermine d = A A B et on tente de diviser I'équation par d :

e Sid{C, alorsiln’y a pas de solution.

e Sid|C, onpose

A B C
="€Z b=-€Z c=-¢€Z
a dG dE c d€

On peut alors diviser 'équation pard: Ax+By=C <= ax+by=c.Deplusanb=1.

2. On passe I'équation au modulo b, on obtient: ax = ¢ [b], que I'on résout. On trouve que x est de
la forme x(k) = xo + bk avec xo € Z fixé et k € Z quelconque.

3. On injecte cette valeur x(k) dans 1'équation ax+ by = c et on trouve la valeur y(k) correspondante.
Lensemble des solutions est alors { (xz, y¢) | k € Z}.

Exemple 17. Résoudre 10x + 6y = 8.

7 PPCM et extension du PGCD

7.1 PPCM

Soita,b € N*. On souhaite définir le PPCM de a et b comme étantle plus petit des multiples communs strictement
positifs de a et b. Or, 'ensemble des multiples communs strictement positifs a a et b est 'ensemble

X =aZNbZNN*

Le PPCM de a et b sera le minimum de X. Mais il faut s’assurer que ce minimum existe !
e Il est clair que X est une partie de Z.
e De plus, on a clairement ab € X. On en déduit que X est non vide.
e Enfin, X est minoré par 0.

Ainsi, X est une partie non vide et minorée de Z, donc X admet un minimum par le Théoréme 18.5. On en déduit
que la définition suivante a un sens.

G. Peltier 17 /28



Arithmétique

Définition 18.31 - PPCM |

Soit a,b € N*. Le PPCM de a et b est le plus petit des multiples communs strictement positifs a a et b. On
le note a V b.

Exemple 18. Le PPCM de 12 et de 18 est 36. En effet (on omet les multiples négatifs) :
122 ={---,12,24,36,48,60,72,-- - } 182 ={---,18,36,54,72,---}
Ainsi, 12ZN18ZNN* = {36,72,--- } etdonc 12V 18 = 36.

Remarque (Convention a V0 = 0). Pour tout a € Z, on pose par convention? a\V 0 = 0. Ainsi, a V b a un sens
pour tous a, b € Z.

Exemple 19. Soita,b € N

l.avVl=...... 4. Si(a,b) #(0,0), avb>1

2.av0=0 5. aVvb<ab

3. avVb=bVa 6. aVb=b <= alb
Théoréeme 18.32 |

Soit a,b € Z. Alors les multiples communs a a et b sont exactement les multiplesde aVV b :
aZNbZ = (aVDb)Z
ou encore, de maniere équivalente :

VneZ (a|ln et b|n) < (aVb)|n

Théoreme 18.33 - Factorisation dans un PPCM |

Soita,b € Z et c € N*. Alors (ca) V (¢b) = c(aV b).

Démonstration. Pour montrer |'égalité de ces deux entiers (posi- que ca | m, donc en particulier ¢ | m. Ainsi, il existe m’ € Z tel
tifs), il suffit de montrer que chacun divise I'autre. que m = cm’. Comme ca | m, onadonc ca | cm’, d’otra | m'.
e Montrons que (ca) V (cb) | c(aV b). Tout d’abord, a | a Vv b Onmontre de méme que b | . Ainsi, par le Théoreme 18.32,

donc ca | ¢(aV b). De méme on montre que cb | ¢(aV b). On
en déduit par le Théoréme 18.32 que (ca) V (cb) | c(aV b).
e Onposem = (ca)V (cb). Montrons que ¢(a\ b) | m. On sait O

onaaVb|m'.DoticlaVh)|cn', ie claVvb)|m.

Théoréme 18.34 |

Soita,b € Z. Alors
(aV D) x (aNb) = |ab|

2. Comme pour le PGCD, a V0 a un sens si on modifie la définition de a V b comme étant le minimum de aZ NbZ NN pour la
relation d’'ordre “divise” deN. Dans ce cas, aZ N0Z NN = {0} et donc 0 est bien le minimum de cet ensemble (car 0 | 0). Cette nouvelle
définition est cohérente avec la définition classique du PPCM de deux entiers a et b tels que (a,b) # (0,0) : dans 'exemple ci-dessus, on
a12ZN18ZNN ={0,36,72,---} = 36N et 36 est bien le plus petit élément de cet ensemble pour la relation “divise” car il divise tous les
autres élements de cet ensemble.
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Démonstration. Par définition du PGCD et du PPCV, il suffit de regarder le cas a,b € N. L'égalité est évidente si

a=0oub =0.0nsuppose donc a,b € N*,

| Méthode |
|ab|

Pour calculer le PPCM a V b, on peut donc calculer le PGCD a A b puis calculer vy
a

Exemple 20. Calculer le PPCM de 195 et de 247.

7.2 PGCD de plusieurs entiers

Définition 18.35 |

Soitay,- - ,a, € Z.Le PGCD des entiers ay, - - - ,a, est'’entier qui est leur plus grand diviseur commun.
On le note

n
_/\la,-::al/\az/\---Aan
=]

avec la convention OAOA ... A0 =0.
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La notation est cohérente car on peut montrer que A est associative : aj A (a; Aaz) = (a; Aaz) Aaz donc on
peut enlever les parenthéses sans ambiguité. De plus, on peut changer 'ordre des entiers ay, - - - ,a, du PGCD
comme on le souhaite.

Exemple21. 195 A247A18 = oo
Remarque. Sia; =0, on a en particulier :
agNayN...Nap=0A(ax \...Nay) =ax ... \Nay

Sur le méme principe, lorsqu’on calcule le PGCD de a; A ... A a,, on peut exclure du calcul tous les termes a; qui
sont nuls.

Définition 18.36 |

1
1
'+ Soitay,---,a, € Z.Onditque ay,- - - ,a, sont premiers entre eux dans leur ensemble sia; A---Aa, = 1. .
' .
| 1
. Onditqueay,---,a, sont premiers entre eux deux a deux si pour tous i, j € [1,n], sii # j, alorsa;Aaj=1. !
Siay,---,a, sont premiers entre eux deux a deux alors ils le sont dans leur ensemble. La réciproque est fausse :

2A3N6=1 mais 6A3=3#1

On peut généraliser a n entiers la plupart des résultats vus pour deux entiers. Les plus utiles (et au programme)
sont les théoremes de Bézout et de Bézout-Bachet :

Théoreme 18.37 — Relation de Bézout généralisée

Soitay,- - ,a, € Z.1l existe uy, - -- ,u, € 7 tels que

aiuy +asuy + ...+ apu, =ay Nay N+ Aay,

Théoréme 18.38 — Théoreme de Bézout généralisé

Soitay,...,a, € Z.

aiN--Na,=1 <=  Juy, -, u, €7 ayuy+...+auu, =1

Les preuves reposent entierement sur une récurrence : I'exemple ci-dessous permet de mieux comprendre I'idée
de la preuve.

| Méthode |

Pour calculer le PGCD de n entiers ay, - - - ,a, ainsi que leurs coefficients de Bézout, on se ramene a des
calculs successifs de PGCD et des coefficients pour deux entiers a la fois : d’abord entre a; et a, ensuite
entre a; A\ ap et as, etc. Cf exemple ci-dessous.

Exemple 22. Montrer que 5, 195 et 247 sont premiers dans leur ensemble, puis trouver u,v,w € Z tels que
Su+195v+ 247w = 1.
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8 Nombres premiers

8.1 Définitions et lemmes préliminaires

| Définition 18.39 |

On appelle nombre premier tout entier p > 2 tel que les seuls diviseurs positifs de p sont 1 et p.
On note P 'ensemble des nombres premiers.

Autrement dit, p est premier si div(p) "N = {1, p}. Un nombre qui n’est pas premier est appelé un nombre
composé.

Exemple 23. 1 n’est pas un nombre premier. 2 est 'unique nombre premier pair, tous les autres sont impairs.
Remarque. Sin > 2 est composé (i.e. non premier), alors il existe a,b € [2,n — 1] tel que n = ab.

En effet, div(n) NN # {1,n}, donc il existe a € [2,n — 1] tel que a | n. En particulier, il existe b € Z tel que n = ab.
On montre alors facilement que, comme 1 < a < n,onaaussi 1 <b < n.

Lemme 18.40 |

Soita € Z et p € P.Oubien p | a, oubien pAa = 1.

En particulier, p est premier avec tout entier qu’il ne divise pas.

Démonstration. On a p Aa € div(p) NN = {1, p}, donc deux cas sont possibles : ou bien p Aa = 1, ou bien
p/Aa=p.0Or,onavu (Exemple 6) que pAa=p <= p|a. Doulerésultat. O

Théoreme 18.41 - Lemme d’Euclide |

Soita,b € Zetp e P.Sip|ab,alorsp|aoup|b (ouinclusif!).

Corollaire immeédiat : si p divise un produit a; x --- X ay, alors p divise (au moins) un des entiers a, - - ,ay.
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Démonstration. Supposons que p | ab. Si p | a, alors on a le résultat voulu. Supposons que p ne divise pas a. Par
le Lemme 18.40 ci-dessus, on a alors p Aa = 1. Donc par le lemme de Gauss, comme p | ab, on en déduit que
p|b. O

| Lemme 18.42 |

Soit p1, p> € P.Si py | pa, alors p; = po.

Démonstration. Comme p; | p2, on a p; € div(p;) NN, i.e. p; € {1, p,}. Comme p; est premier, on a p; > 2,
donc p; = p». O

8.2 DPFP - Existence

Le but de cette section et de la suivante est d’établir que tout entier n» > 2 admet une unique DPFP i.e. une
décomposition en produits de facteurs premiers. Dans un premier temps, on établit un résultat qui permet de
déduire I'existence de cette décomposition.

Lemme 18.43 |

Tout entier n > 2 peut s’écrire comme un produit de nombres premiers (non nécessairement distincts).
Autrement dit, il existe N € N* et gy, -- ,qy € P tels que

n=qp X...xXqgn

Démonstration. On procede par récurrence forte sur n.
o Initialisation : sin = 2, alors n = g, avec g; = 2 € IP. Sa décomposition en PFP est lui-méme !
e Hérédité : soit n € N. On suppose que tout entier k € [2,n] peut s’écrire comme un produit de nombres
premiers. Montrons qu’il en est de méme pour n+ 1.
- Sin+ 1 est premier, alors la encore, il est sa propre décomposition.
- Sin+ 1 n'est pas premier, alors il est composé : il existe donc a,b € [2,n] tels que n+ 1 = ab. Par
hypotheése de récurrence, a et b peuvent s’écrire comme un produit de nombres premiers, donc n + 1
aussi.

e Finalement, tout entier n > 2 peut s’écrire comme un produit de nombres premiers.

O
Corollaire 18.44 |
Tout nombre entier n > 2 admet (au moins) un diviseur premier.
Soit n > 2 un entier. Par le Lemme 18.43, n admet une DPFP : on a donc
n=q xqyx--xqy avecn €N, gqp,--- qgvEP
De plus, quitte a réindexer les entiers g1, - - - , gy, on peut imposer que g; < ... < gy. Cependant, on modifier

cette écriture en rassemblant les nombres premiers qui sont égaux : il existe donc r > 1 nombres premiers
distincts p1 < py < ... < p, tels que

n=pHt xp¥x..xp¥  aveca,a, 0 €N

Ceci est la forme générale de la décomposition en produits de facteurs premiers. On a obtenu 'existence
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8.3 DPFP - Unicité

Théoréeme 18.45 |

o, 00, -, 0, € N* tels que

facteurs premiers de n.

Soit n > 2 un entier. Il existe un entier r > 1, des nombres premiers p; < p; < --- < p, et des entiers

_ oo m a
n=p'py...p

De plus, les entiers (p;)1<i<, et (¢)1<i<, sont uniques. Les nombres premiers py, - - - , p, sont appelés les

Démonstration. Lexistence découle du Lemme 18.43. Montrons
I'unicité de cette décomposition. Supposons qu'un entier n > 2
admette les deux décompositions ci-dessous et montrons qu’elles
coincident :

B B By

n = q1 95 ---9s

PPy pt =
donc il faut montrer que r = s, et que Vk € [1,7]
qr et og =P

e Soiti € [1,r]. Montrons qu'il existe j € [1,s] tel que p; | ¢;.
B B

Comme p; | ¢7'q5” -~ 45", par le lemme d’Euclide, il existe

Pk =

J€[1,s] tel que p; | qjﬁs’. Ainsi, p; divise le produit ¢; - - - g;.
~——

B fois

En appliquant a nouveau le lemme d’Euclide, on a p; | ¢;.

e Comme p; | g; et que g; est premier, on en déduit que
(Lemme 18.42) p; = g;. Ainsi, chaque p; est égal a un g,
et un seul (car les g; sont tous distincts). Réciproquement,
chaque g; est égal a un et un seul p;. On en déduit que
r = s. De plus, comme les familles (p;) et (¢;) sont stricte-
ment croissantes, on a nécessairement p; =qp, po =q2, -,
Pr=4dr-

e Par ce qui précéde, on a donc

B

(n =) ppP.p® = pypi

%

Supposons par I'absurde que «; # B, par exemple o) < f3;.
Alors en divisant I'égalité par p‘lx' , on trouve que :

= p?ﬁm X (pgz...pg’)
= pix (p?'f'x“'pgz---pf?’)

€Z

o o,
I’QZ < Pr

Donc p; divise pzo‘2 ...p%. Comme a la premiere étape de
la preuve, cela entraine qu'il existe j > 2 tel que p; | p;.
Comme py,p; sont premiers, on a p; = p;. Or, c’est im-
possible puisque j > 2 et que les nombres py,-- -, p, sont
distincts. Contradiction. Donc o = 3. En divisant I'égalité
par p?] , on obtient donc :

Q, ﬁ? ﬁl‘

Py P =Py pr

et on montre de méme que o = f3,, etc. En réitérant le
processus, on en conclut que (ay,---,0) = (Br, -, Br)-

Finalement, r =set Vke€ [I,r] pr=qr et oy = B Les
deux décompositions sont donc bien égales. O

Exemple 24. Décomposer 1400 en produits de facteurs premiers.

Corollaire 18.46 |

11 existe une infinité de nombres premiers.

Démonstration. Supposons par ’absurde qu’il n’existe qu'un nombre fini n de nombres premiers distincts, notés
p1, -+, pn. Notons que n > 1 car (par exemple) 2 est premier. On pose

N:=pipr---pat1

Commen > 1,onaN > 2, donc N admet un diviseur premier qui est forcément parmi py,- - - , p,. Supposons que
ce diviseur soit p; (la preuve sera identique dans les autres cas). Ainsi, p; | N et par ailleurs p; | p1p2--- py. Donc
pi1 divise N — p1p; -+ pp, C'est-a-dire 1. D’ot1 p; € {—1, 1}, ce qui est absurde. Ainsi, I'ensemble des nombres
premiers est infini. O
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8.4 Valuation p-adique

Définition 18.47

Soit p € P. Pour tout entier n € N*, on appelle valuation p-adique de n, la puissance de I'entier p qui
apparait dans la DPFP de n, et on la note v, (n).
Si p n'apparait pas dans la DPFP de n, on pose v,(n) = 0.

Alternativement, v, (n) peut étre défini comme le plus grand entier k € N tel que
pk ’ n et pk-H Jf n

On a toujours v, (n) € N.

Définition 18.48 — Décomposition généralisée

Pour toutn € N*,ona:

S
]
—
B ]
>
)

Exemple 25. o Comme 90 = 2! x 3% x 5!, on av(90) = v5(90) = 1 et v3(90) = 2. Les autres valuations sont
nulles.

o Sip estun nombre premier et o € N, v,(p%) = ...

Remarque. La décomposition généralisée de n est un produit infini (car PP est infini), mais en pratique seul un
nombre fini de termes du produit sont différents de 1. Cette décomposition est la encore unique.

Théoréme 18.49 |

Soita,b € N*.
alb <= VpeP vy(a)<v,(b)
a=b <<= VpeP v,(a)=v,(b)
De plus, pour tout nombre premier p,
L. vy(ab) =v,(a)+v, (D) et en particulier v,(a") = nv,(a) pour tout n € N*.
2. vp(anb) =min(v,(a),v, (D))
3. vp(aVb)=max(v,(a),v,(b))

Démonstration. On ne prouve que I’assertion 1.



| Méthode |

On peut calculer un PGCD et un PPCM a partir de la décomposition en produits de facteurs premiers, cf
exemple ci-dessous.

Exemple 26. Calculer le PGCD et le PPCM de 360 et 315.

Exemple 27. Combien 1400 a-t-il de diviseurs positifs ? Et de diviseurs de signe quelconque ?

Exemple 28. Soit a,b € N*. Montrer que a® Ab®> = (a Ab)>.
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8.5 Vérifier rapidement si un nombre est premier

Soit un entier n > 2 dont on veut savoir s’il est premier.
e Méthode longue : vérifier si pour tout k € [2,n — 1] on a bien k t n, donc de vérifier que div(n) "N = {1,n}.
e Méthode moins longue : vérifier si pour tout nombre premier p < n— 1, on a bien p{n.

e Méthode optimale : vérifier si pour tout nombre premier p < v/n, on a bien p { n.

Exemple 29. Est-ce que 89 est un nombre premier ?

8.6 Petit théoreme de Fermat

Lemme 18.50 |

Soit p un nombre premier. Pour toutk € [[1,p— 1], ona

ol (})

Démonstration.

Corollaire 18.51 |

Pourtousa,b € Z,ona:
(a+b)" =a? +b7 [p]

Démonstration. Par la formule du bin6me, on a
p—1 p
(a+b)’ =a”+b"+ ) <k> adpr*
k=1

Puisque p | (Z ) pour tout k € [[1,p— 1], en passant modulo p dans I'équation, on a bien (a + b)’ = a” +
b [p]. =

26/28 G. Peltier



Arithmétique

Théoréme 18.52 - Petit théoréme de Fermat |

Si p est un nombre premier et a € Z, alors
a’ =a [p]
De plus, siaA p =1, alors
—1 —
ap =1 [p]

Démonstration. Sia” =a [p]eta p =1, alors on peut diviser par Donc la propriété est vraie au rang a + 1.
a dans la congruence (crochet exclu) et en déduire que a” ' = 1 [p]. e Finalement, pour touta € N, a” = a [p].
I suffit donc de montrer que a” = a [p]. Faisons enfin la preuve pour a € Z \ N. Comme p > 2, il existe k € N

On fait d’abord la preuve pour a € N, par récurrence sur a. (assez grapd) te;l que a +kp > 0. O/npposepalors d :=a+kp. Par
e Sia=0,alors 0” = 0 donc 0” = 0 [p]. La propriété est vraie construction, a' = a [p] et donc (a')? = a” [p]. De plus, comme
aurang 0. d >0, on amontré que (¢')” =d’ [p]. Ainsi, of = (@)’ =d =
e Supposons que a” = a [p] pour una € N, et montrons que ¢ pl-
(a+1)? =a+1 [p]. Par le lemme ci-dessus, comme p est

premier,
(a+1)P =a’+17 [p]
=a+17 [p] par hypothese de récurrence
=a+1 [p]
Exemple 30. Quel est le reste de la division euclidienne de 142024 par11?
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9 Méthodes pour les exercices

Méthode

]

Pour montrer que deux entiers a et b sont premiers entre eux, on peut :
e Poser d = a /b et montrer que d divise 1.
e Utiliser le théoréme de Bézout.

e Supposer par 'absurde que a A b # 1. Alors il existe un nombre premier p qui divise a A b, donc qui
divise a et b. En déduire une contradiction.

]

Méthode

Pour calculer le PGCD de deux entiers a et b, on peut :
e Appliquer I'algorithme d’Euclide.
e Décomposer a et b en produits de facteurs premiers.
e Sion estime que a et b sont premiers entre eux, on peut utiliser la méthode précédente.

Cette méthode s’adapte également au calcul de PPCM, et on peut par ailleurs utiliser la formule (a A
b)(aVb)=..

1l faut connaitre les méthodes pour résoudre une équation de congruence (forme ax = b [n]), une équation
diophantienne (forme ax + by = ¢) sans les confondre !
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